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About the title Water waves and ripples Shallow water models Higher order models

Why “modeling”?
Replace “complicated’ set of equations with “simple” set of equations.

1 To enlighten the basic mechanisms of a phenomenon
• Wavebreaking: ∂tu + u∂xu = 0 (Hopf)
• Solitary waves: ∂tu + u∂xu + ∂3

xu = 0 (KdV)
• Non-smooth solitary waves (or wave breaking and solitary waves):

∂tu +
√

tanh(|D|)
|D| ∂xζ + ζ∂xζ = 0 (Whitham)

2 To produce approximate solutions (e.g. numerical)
• O(µ) : ∂tζ +

√
gd
(
∂xζ + 3

2d ζ∂xζ
)

= 0 (Hopf)
• O(µ2+ µε): ∂tζ +

√
gd
(
∂xζ + 3

2d ζ∂xζ + d2∂3
x ζ
)

= 0 (KdV)

• O(µε) : ∂tζ +
√
gd
(√ tanh(d |D|)

d |D| ∂xζ + 3
2d ζ∂xζ) = 0 (Whitham)

•
•
•

3 To publish papers. To have fun.
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About the title Water waves and ripples Shallow water models Higher order models

Why “water waves”?

Figure: Water waves, by Anouk and Lucie Duchêne

[Feynman] “[water waves] that are easily seen by everyone and which are usually
used as an example of waves in elementary courses [...] are the worst possible
example [...]; they have all the complications that waves can have.”

Standard models include: Saint-Venant, Boussinesq, Serre–Green–Naghdi,
Matsuno, Korteweg–de Vries, Benjamin–Bona–Mahony, Camassa–Holm,
Kawahara, Whitham, Kadomtsev–Petviashvili, Dysthe, Benney–Roskes, NLS...
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About the title Water waves and ripples Shallow water models Higher order models

Why “the art”?

There will be traps. Avoiding them will have a cost.
We will make choices, with benefits and downsides.

A useful tool: theorems.

Table of contents

1 About the title
2 Water waves and ripples
3 Shallow water models

Derivation
Justification
Numerical simulation

4 Higher order models
A unified framework
Interfacial waves
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About the title Water waves and ripples Shallow water models Higher order models

All you need to know about the water waves
system (today)

Warning: the following applies only to inviscid, incompressible, homogeneous, irrotational flows. Serving suggestion.

Zakharov/Craig-Sulem formulation [Zakharov ’68, Craig&Sulem ’93]{
∂tζ − δH

δψ = 0,
∂tψ + δH

δζ = 0,
(WW)

with
H (ζ, ψ)

def
= 1

2

∫
Rd

ζ2 + ψ Gµ[εζ]ψ dx

where the Dirichlet-to-Neumann operator Gµ[εζ]ψ is defined by

Gµ[εζ]ψ = ( 1
µ∂zΦ− ε∇ζ · ∇xΦ)|z=εζ

with Φ solution to
µ∆xΦ + ∂2

z Φ = 0 in {(x, z), −1 < z < εζ(t, x)},
Φ = ψ on {(x, z), z = εζ(t, x)},
∂zΦ = 0 on {(x, z), z = −1}.
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Water waves =
(
Hyperbolic

)
×
(
Elliptic

)
.

4 / 20



About the title Water waves and ripples Shallow water models Higher order models

Our journey starts with ripples

We set ε = 0

Zakharov/Craig-Sulem formulation [Zakharov ’68, Craig&Sulem ’93]{
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∂zΦ = 0 on {(x, z), z = −1}.
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About the title Water waves and ripples Shallow water models Higher order models

Lessons from the modal analysis{
∂tζ − 1√

µ |D| tanh(
√
µ|D|)ψ = 0,

∂tψ + ζ = 0.
(Airy)

Dispersion relation (for plane waves ∝ e ik·x−iωt)

c2 def
=

ω2

|k|2
=

tanh(
√
µ|k|)

√
µ|k|

.

Some approximations (valid when
√
µ|k| � 1)

1 c2 = 1 X Non-dispersive. Relative error less than 10% for
√
µ|k| < 0.055.

2 c2 = 1− µ
3 |k|

2 ××× Unstable modes for
√
µ|k| >

√
3.

3 c2 = 1
1+µ

3 |k|2
X Relative error less than 10% for

√
µ|k| < 1.914.

4 c2 = 1− µ
3 |k|

2 + 2µ2
15 |k|

4 + . . . ××× Series do not converge for
√
µ|k| > π

2 .
5 c2 = 1

1+µ
3 |k|2−

µ2
45 |k|4+...

××× Series do not converge for
√
µ|k| > π.

6 c2 = 1
1+ µ|k|2

3+ µ|k|2

5+ µ|k|2

...+ µ|k|2
2N+1

X Padé approximant. Uniformly convergent.
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1 About the title

2 Water waves and ripples

3 Shallow water models
Derivation
Justification
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4 Higher order models
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About the title Water waves and ripples Shallow water models Higher order models

Switching back on the nonlinearity
Recall the Dirichlet-to-Neumann operator Gµ[εζ]ψ is defined by

Gµ[εζ]ψ = ( 1
µ∂zΦ− ε∇ζ · ∇xΦ)|z=εζ

with Φ solution to
µ∆xΦ + ∂2

z Φ = 0 in {(x, z), −1 < z < εζ(t, x)},
Φ = ψ on {(x, z), z = εζ(t, x)},
∂zΦ = 0 on {(x, z), z = −1}.

An equivalent formulation is

Gµ[εζ]ψ = −∇ ·

(∫ εζ(t,·)

−1
∇xΦ(·, z) dz

)
with Φ solution to

Φ + µ`[εζ]Φ = ψ, `[εζ]Φ(·, z)
def
= −

∫ εζ

z

∫ z ′

−1
∆xΦ(·, z ′′) dz ′′ dz ′.

We infer approximate formula at any order O(µN):
Φ = ψ +O(µ), Φ = ψ − µ`[εζ]ψ +O(µ2), . . .
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Switching back on the nonlinearity
An equivalent formulation is

Gµ[εζ]ψ = −∇ ·

(∫ εζ(t,·)

−1
∇xΦ(·, z) dz

)
with Φ solution to

Φ + µ`[εζ]Φ = ψ, `[εζ]Φ(·, z)
def
= −

∫ εζ

z

∫ z ′

−1
∆xΦ(·, z ′′) dz ′′ dz ′.

We infer approximate formula at any order O(µN):
Φ = ψ +O(µ), Φ = ψ − µ`[εζ]ψ +O(µ2), . . .

This yields approximations to the Dirichlet-to-Neumann operator:

X Gµ[εζ]ψ = −∇ · ((1 + εζ)∇ψ) +O(µ),

××× Gµ[εζ]ψ = −∇ · (h∇ψ) + µ∇ ·
(
hT [h]∇ψ

)
+O(µ2),

X Gµ[εζ]ψ = −∇ ·
(
h
(
Id+µT [h]

)−1∇ψ
)

+O(µ2),

with h = 1 + εζ and T [h]u = −1
3h∇(h3∇ · u).

8 / 20



About the title Water waves and ripples Shallow water models Higher order models

Approximations to the Dirichlet-to-Neumann
operator

[Lannes]

For any sufficiently regular ζ such that

∀x ∈ Rd , h(x)
def
= 1 + εζ(x) ≥ h? > 0,

one has for any k ∈ N, ε ≥ 0 and µ ∈ (0, 1],

X
∣∣Gµ[εζ]ψ +∇ · ((1 + εζ)∇ψ)

∣∣
Hk ≤ Ck+4 µ

∣∣∇ψ∣∣
Hk+3 ,

××× ∣∣Gµ[εζ]ψ +∇ · (h∇ψ)− µ∇ ·
(
hT [h]∇ψ

)∣∣
Hk ≤ Ck+6 µ

2 ∣∣∇ψ∣∣
Hk+5 ,

X
∣∣Gµ[εζ]ψ +∇ ·

(
h
(
Id+µT [h]

)−1∇ψ
)∣∣

Hk ≤ Ck+6 µ
2 ∣∣∇ψ∣∣

Hk+5 ,

with Ck = C (k, h−1
? ,
∣∣εζ∣∣

Hn) and T [h]u def
= −1

3h∇(h3∇ · u).

Plugging these approximations in the water waves equations yields...
9 / 20



About the title Water waves and ripples Shallow water models Higher order models

Historical shallow-water models
The Saint-Venant system{

∂tζ +∇ ·
(
(1 + εζ)u

)
= 0,

∂tu +∇ζ + ε(u · ∇)u = 0,
(SV)

with u = ∇ψ (or u = u def
= 1

1+εζ

∫ εζ
−1∇xΦ(·, z) dz).

A special case of compressible Euler equations. Finite-time singularity formation.
Used when the problem features dry zones, discontinuities (dam-break), etc.

The Green–Naghdi system{
∂tζ +∇ · (hu) = 0,(
Id+µT [h]

)
∂tu +∇ζ + ε(u · ∇)u + µεQ[h,u] = 0,

(GN)

where h
def
= 1 + εζ, Q[h,u]

def
= −1

3h∇
(
h3((u · ∇)(∇ · u)− (∇ · u)2)), and

T [h]u def
= −1

3h∇(h3∇ · u) with u = (Id+µT [h]
)−1∇ψ (or u = u).

Explicit family of solitary waves. Globally well-posed?
A lot of activity around (GN) recently.
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Fully rigorous justification
The full justification of a model typically stems from the combination of

1 Consistency
Regular solutions to the water waves system satisfy approximately the model

2 Well-posedness
Existence and control of solutions on a relevant time interval

3 Stability
Control of the difference between exact and approximate solutions of the model

 Control of e, the difference between the solution to the water waves
system and the corresponding solution to the model.

The Saint-Venant system is a quasilinear hyperbolic symmetrizable system.
 [Friedrichs,Garding,Kato ’50s] WP and Stability in Hs(Rd)1+d , s > 1 + d/2∣∣eSV

∣∣
Hk . µ t, t . 1/ε.

X s def
=
{
u :

∣∣u∣∣2
X s

def
=
∣∣u∣∣2

Hs + µ
∣∣∇ · u∣∣2

Hs <∞
}
.
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 Control of e, the difference between the solution to the water waves
system and the corresponding solution to the model.

The Green–Naghdi system is a “quasilinear hyperbolic symmetrizable system”.
 [Li ’06, Fujiwara&Iguchi ’15] WP and Stability in Hs(Rd)× X s , s > 1 + d/2
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About the title Water waves and ripples Shallow water models Higher order models

Hyperbolic reformulation
Recall The Green–Naghdi system{

∂tζ +∇ · (hu) = 0,(
Id+µT [h]

)
∂tu +∇ζ + ε(u · ∇)u + µεQ[h,u] = 0,

(GN)

where h
def
= 1 + εζ, T [h]u = −1

3h∇(h3∇ · u) and

Q[h,u]
def
= −1

3h∇
(
h3((u · ∇)(∇ · u)− (∇ · u)2)).

In numerical simulations, we need to solve at each timestep (for u)(
Id+µT [h]

)
u = v.

The Green–Naghdi system can be written as
∂tζ +∇ · (hu) = 0,

∂tu +∇ζ + ε(u · ∇)u + µ
3h∇(hq) = 0,

q
h = ∂tv + εu · ∇v , v = ∂tζ + εu · ∇ζ = −h∇ · u

(GN)

3 evolution equations + constraint.  relaxation methods. 12 / 20
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Hyperbolic reformulation
The Green–Naghdi system can be written as

∂tζ +∇ · (hu) = 0,

∂tu +∇ζ + ε(u · ∇)u + µ
3h∇(hq) = 0,

q
h = ∂tv + εu · ∇v , v = ∂tζ + εu · ∇ζ = −h∇ · u

(GN)

3 evolution equations + constraint.  relaxation methods.
[Favrie&Gavrilyuk ’17] proposed

∂tζ +∇ · ((1 + εζ)u) = 0,

∂tu +∇ζ + ε(u · ∇)u− λµ
3h∇

(
1+εη
1+εζ

(
η − ζ

))
= 0,

∂tw + εu · ∇w = − λ
h2

(
η − ζ

)
,

∂tη + εu · ∇η = w .

(FG)

Quasilinear system of balance laws, singular limit λ� 1 and µ� 1.
[VD ’19]: rigorous justification for well-prepared initial data and λ & µ−1.∣∣eFG

∣∣
Hk×X k . (µ2 + µλ−1) t, t . 1/ε.
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Toy models
Order 1{

∂th = 0,
∂tu + 1

εh∂xu = 0

Animation

h
u

Order 0{
∂th = 0,
∂tu + i

εhu = 0

Animation

h
u

Animation
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A first method
Recall we (and [Lagrange,Boussinesq,Rayleigh]) had an expansion of the
Dirichlet-to-Neumann operator

Gµ[εζ]ψ = −µ∇ ·

(∫ εζ(t,·)

−1
∇xΦ(·, z) dz

)
with Φ solution to

Φ + µ`[εζ]Φ = ψ, `[εζ]Φ(·, z)
def
= −

∫ εζ

z

∫ z ′

−1
∆xΦ(·, z ′′) dz ′′ dz ′.

Φ =
N∑

k=0

(−µ`[εζ])kψ +O(µN+1).

This yields to extended Green–Naghdi systems [Matsuno ’15,’16].

××× The loss of derivatives is 2N + p for some p. No hope of convergence
when N →∞, by the modal analysis.
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A second method

We have another expansion of the Dirichlet-to-Neumann operator

Gµ[εζ]ψ =
N∑

k=0

εk dkGµ[0](ζ, . . . , ζ)ψ +O(εN+1).

Plugging the truncated expansion into the Hamiltonian yields a hierarchy of
models [Craig&Sulem ’93] and also [Dommermuth&Yue ’87, West et al. ’87].

This is known as the high-order spectral method.

X The series converge (shape-analyticity of Gµ)
××× Each of the models could be ill-posed [Ambrose,Bona&Nicholls ’14]
X Well-posedness can be restored without any cost [VD&Melinand]
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The how-to guide to all (?) other methods

1 Select a variational formulation of the Laplace problem
µ∆xΦ + ∂2

z Φ = 0 in {(x, z), −1 < z < εζ(t, x)},
Φ = ψ on {(x, z), z = εζ(t, x)},
∂zΦ = 0 on {(x, z), z = −1}.

2 Select a vertical distribution {Ψi (x, z , εζ)}i and define the
“finite-dimensional” vector space

V =

{
Φ, Φ(t, x, z) =

N∑
i=0

φi (x, t)Ψi (x, z , εζ(t, x))

}
.

3 Define Φapp
N as the Galerkin approximation of the variational problem.

4 Plug in the D2N operator, then the Hamiltonian.
5 Use Hamilton’s equations and enjoy.
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An example

V =

{
Φ, Φ(t, x, z) =

N∑
i=0

φi (x, t)Ψi (x, z , εζ(t, x))

}
.

Setting Ψi (x, z , εζ(t, x)) = (z + 1)2i (motivated by the [Boussinesq,Rayleigh]
shallow-water expansion) yields the Isobe–Kakinuma model

∂tζ +
∑N

i=0∇ · (
h2i+1

2i+1∇φi
)

= 0,
∂tψ + ζ + ε(

∑N
i=0 2ih

2iφi )(
∑N

j=0∇ · (
h2j+1

2j+1∇φi )
+ ε

2

(
|
∑N

i=0 h
2i∇φi |2 + 1

µ(
∑N

i=0 2ih
2i−1φi )

2) = 0,
(IK)

with h = 1 + εζ and {φi}i∈{0,1,...,N} solution to


∑N

j=0

(
− 2i

(2j+1)(2i+2j+1)h
2i+2j+1∆φj − 1

µ
4ij

2i+2j−1h
2i+2j−1φj

)
= 0

∀i ∈ {1, . . . ,N},∑N
i=0 h

2iφi = ψ.
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2i+2j+1∆φj − 1

µ
4ij

2i+2j−1h
2i+2j−1φj

)
= 0

∀i ∈ {1, . . . ,N},∑N
i=0 h

2iφi = ψ.

Isobe–Kakinuma =
(
Hyperbolic

)
×
(
Elliptic

)
.
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An example
the Isobe–Kakinuma model
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with h = 1 + εζ and {φi}i∈{0,1,...,N} solution to


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(
− 2i

(2j+1)(2i+2j+1)h
2i+2j+1∆φj − 1

µ
4ij

2i+2j−1h
2i+2j−1φj
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= 0

∀i ∈ {1, . . . ,N},∑N
i=0 h

2iφi = ψ.

Other models with similar features can be derived with other choices for {Ψi (x, z , εζ)}i
[Athanassoulis&Belibassakis ’99][Lynett&Liu ’04][Klopman,vanGroesen&Dingemans ’10].
Yet only the Isobe–Kakinuma model benefits from [Iguchi ’18].
X full justification as a model of order O(µ1+2N) (recall Padé approximants).
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A brief introduction to interfacial waves
Waves at the interface between two homogeneous layers is a natural
generalization of the water waves framework.
New phenomena arise.

Role of the density contrast
 Boussinesq approximation, rigid-lid framework [VD ’14,’16]

Kelvin–Helmholtz instabilities (KH)
 ill-posedness (!)

Do shallow water models predict the propagation of sharp interfaces?
X The hydrostatic model (which extends the Saint-Venant model)
tames KH. [Guyenne,Lannes&Saut ’10][Bresch&Renardy ’11]
(WP when h1, h2 > 0 and γε|u1 − u2|2 < a0 with some explicit a0(h1, h2) > 0).

××× The Miyata–Choi–Camassa model (which extends Green–Naghdi)
overestimates KH. [Jo&Choi ’02][Lannes&Ming ’15] (modal analysis).
X The Kakinuma model (which extends the Isobe–Kakinuma model)
tames KH. [VD&Iguchi ’21]
(WP when h1, h2 > 0 and γε|u1 − u2|2 < aN with aN → 0 as N →∞).
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What we have done

Rigorously justified standard and widely used models for water waves
(Saint-Venant, Green–Naghdi);

Rigorously justified a hyperbolic relaxation of the Green–Naghdi system
(Favrie–Gavrilyuk);

Formally derived a class of high-order models, and rigorously justified a
family (Isobe–Kakinuma);

Ventured into the world of interfacial waves (Choi–Camassa, Kakinuma).

What we have not done

Compared high-order models and their limit towards the water waves system;

Entered the world of non-potential and/or continuously stratified flows;

Said anything on solutions besides local-in-time existence
(existence and stability of solitary waves, global existence vs finite-time singularity);

Used models for practical problems
(bottom reconstruction, fluid-structure interaction, etc.).

Thank you for your attention
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