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About the title
@00

Why “modeling’?

Replace “complicated’ set of equations with “simple” set of equations.

@ To enlighten the basic mechanisms of a phenomenon
e Wavebreaking: 0;u+ udxu =0 (Hopf)
e Solitary waves: d;u + udyu+ 03u =0 (KdV)
e Non-smooth solitary waves (or wave breaking and solitary waves):

Oru + tan‘hngl)axg +C0x( =0 (Whitham)
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© To publish papers. To have fun.
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Why “water waves”?
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Figure: Water waves, by Anouk and Lucie Duchéne

[Feynman] “[water waves] that are easily seen by everyone and which are usually
used as an example of waves in elementary courses [...] are the worst possible
example [...]; they have all the complications that waves can have.”

Standard models include: Saint-Venant, Boussinesq, Serre—Green—Naghdi,
Matsuno, Korteweg—de Vries, Benjamin—Bona—Mahony, Camassa—Holm,
Kawahara, Whitham, Kadomtsev—Petviashvili, Dysthe, Benney—Roskes, NLS...

2/20



About the title Water waves and ripples Shallow water models Higher order models
oeo 000 000000 00000

Why “water waves”?

A
W,\/\/\_ /\/[5
EAU

e

Figure: Water waves, by Anouk and Lucie Duchéne

[Feynman] “[water waves] that are easily seen by everyone and which are usually
used as an example of waves in elementary courses [...] are the worst possible
example [...]; they have all the complications that waves can have.”

Standard models include: Saint-Venant, Boussinesq, Serre—Green—Naghdi,
Matsuno, Korteweg—de Vries, Benjamin—Bona—Mahony, Camassa—Holm,
Kawahara, Whitham, Kadomtsev—Petviashvili, Dysthe, Benney—Roskes, NLS...



w water models r order models

About the title Water waves and ripples St
oeo 000

Why “water waves”?

—————

Figure: Water waves, by Anouk and Lucie Duchéne

[Feynman] “[water waves] that are easily seen by everyone and which are usually
used as an example of waves in elementary courses [...] are the worst possible
example [...]; they have all the complications that waves can have.”
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Why “the art”?

There will be traps. Avoiding them will have a cost.
We will make choices, with benefits and downsides.

A useful tool: theorems.

Higher order models
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All you need to know about the water waves
system (today)

Warning: the following applies only to inviscid, incompressible, homogeneous, irrotational flows. Serving suggestion.

Zakharov/Craig-Sulem formulation [Zakharov '68, Craig&Sulem '93]

8¢ — % =0,
{ oo ix ()|

with
A Y [ ¢ rugiua
where the Dirichlet-to-Neumann operator G/[¢(]v is defined by
Gl = (L0 — V¢ - Vi)l o

with ® solution to

DD + 020 =0 in {(x,z), -1 <z <e((t,x)},
=19 on {(X,Z), zZ= 6C(t7x)}7
0,¢=0 on {(x,z), z=—1}.
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All you need to know about the water waves
system (today)

Zakharov/Craig-Sulem formulation [Zakharov '68, Craig&Sulem '93]

0:¢ — %2 =0,
{ 6tfb n M” o, (VVVV)J

with
Ay [ rugipax

where the Dirichlet-to-Neumann operator G/[¢(]v is defined by
GH[eClep = (£0,® — eV (- Vi®)| =

with ® solution to

DD + 020 =0 in {(x,2), =1 <z < e(t,x)},
{ b =1 on {(x,z), z=e((t,x)}, J
0,9=0 on {(x,z), z=—1}.

Water waves = ( Hyperbolic ) x ( Elliptic ).
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Our journey starts with ripples

We set e =0

Zakharov/Craig-Sulem formulation [Zakharov '68, Craig&Sulem '93]

Ot =0,
{ o b o v |

with
AGOEE Y SER At
where the Dirichlet-to-Neumann operator G/[¢(] is defined by

GHeC = (1020 — €VC - Vi) o

with @ solution to

AP + 92 =0 in {(x,2), -1 <z <e((t,x)},
=1 on {(x,z), z=e((t,x)},
0,=0 on {(x,z), z=—1}.
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Our journey starts with ripples

We set e =0

Zakharov/Craig-Sulem formulation [Zakharov '68, Craig&Sulem '93]

15) =0,
{ aii-l- oA _ g (VVVV)J

with
H(GH) = /]R ¢+ g0y dx
where the Dirichlet-to-Neumann operator G"[0] is defined by
G0} = (;:0:9)|z=0 = =|D|tanh(\/1| D|)3
with @ solution to

(AP + 02 =0 in {(x,z), -1 <z <0},
¢=1 on {(X,Z), ZZO},
0,=0 on {(x,z), z=—1}.
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Our journey starts with ripples

We set e =0

Zakharov/Craig-Sulem formulation [Zakharov '68, Craig&Sulem '93]

0:¢ — J|DI tanh(\/ziI D)y = 0, (Airy)
o +¢ =0, y J

with
A Y [ @+ Lo |Dltanh( D] ax
Rd
where the Dirichlet-to-Neumann operator G/[0] is defined by
G'[0] = (;:0:9)|z=0 = =|D|tanh(\/z| D|)3
with @ solution to

(AP + 02 =0 in {(x,z), -1 <z <0},
¢ =1 on {(X,Z), ZZO},
0,=0 on {(x,z), z=—1}.
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Lessons from the modal analysis

8:¢ — LD tanh(y/72|D|)y = 0,

Beth + ¢ = 0. (AiW)J

Dispersion relation (for plane waves o elk*~wt)

2 det w? _ tanh(y/7ilk])

kPl

Some approximations (valid when //ilk| < 1)

(1) =1 \/ Non-dispersive. Relative error less than 10% for /71|k| < 0.055.
Q c2=1- %‘k‘z X Unstable modes for Vilk| > V3.
(3] c? = ﬁlﬂ(ﬁ \/ Relative error less than 10% for \/u|k| < 1.914.
2
Q 2=1- %‘k‘2+%’k’4+ X' Series do not converge for N
Q 2 = 1+%|k|2_1%‘k‘4+_“ X' Series do not converge for \/jik| > .
(6 2 __ 1 \/ . . .
ct = e Padé approximant. Uniformly convergent.
14—k
1]k|2
M

5+
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© Shallow water models
@ Derivation
@ Justification
@ Numerical simulation

Higher order models
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Switching back on the nonlinearity
Recall the Dirichlet-to-Neumann operator G/ [e(]1) is defined by
GM[eCl = (L0, — V- V)|

with ® solution to

AP+ 070 =0 in{(x,2), -1 <z <e(t,x)},
® =1 on {(x,2), z=e((t,x)},
9;%=0 on {(X, 2)7 z= _1}

An equivalent formulation is

e((t,")
GHeCly = =V - </1 VXCID(-.Z)({Z)

with ® solution to
&+ plle]d =,  ([e]d(-,2) & / / Ad(-, 2") d2" dZ'.

We infer approximate formula at any order O(pN):
® =+ O(n), & = — pl]eClh + O(12),
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Switching back on the nonlinearity
Recall the Dirichlet-to-Neumann operator G*[¢(] is defined by
Q"[GC]?X) = (%Lazq) — V(- Vx¢)|z:ec

with ® solution to

AP + 92 =0 in {(x,2), =1 <z < e((t,x)},
b =1 on {(x,z), z=e((t,x)},
9;%=0 on {(X7Z)7 Z= _1}'

An equivalent formulation is

€C(t,)
GHeCl = —V - (/_1 V(- 2) dz)

with ® solution to

e oz
o+ utleclo v, it~ [ [ Ao,y azaz. J

We infer approximate formula at any order O(pN):

d=+0(n), &= — ]y + 032,
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Switching back on the nonlinearity
Recall the Dirichlet-to-Neumann operator G*[¢(] is defined by
g“[qu/) = (%az(1> — V(- vx¢)|z:fc

with ® solution to

AP + 020 =0 in {(x,z), —1 <z <e((t,x)},
{ b =1 on {(x,z), z=e((t,x)}, J
0,%=0 on {(X,Z), z= _1}'

An equivalent formulation is

«(t)
GhleCly = -V - </_1 Vx®(-, z) dz)

with ® solution to

& + pl[ec]® = o, H{M(z:—/‘/ AD(,2")dz" d7'. J

We infer approximate formula at any order O(uN):
O=1+0(u), =1 —plly+O(°),



About the title Water waves and ripples Shallow water models Higher order models
000 000 @00000 00000

Switching back on the nonlinearity

An equivalent formulation is

«(t)
GhleCly = -V - (/_1 Vx®(-, z) dz)

with ® solution to

«
&+ plfec]d =1, feC]o(, / / AD(,2")dz" dZ'. J

We infer approximate formula at any order O(uN):
Ol b atled s O(u2),
This yields approximations to the Dirichlet-to-Neumann operator:

Voo Gy = =V (L QYY) + O(n),

X Gl = =V - (V) + 1V - (hTTAIVY) + O(1%),

Voo @y = =V (h(1d+uTTH) V) + 0(R),
with h =1+ ¢ and T[hlu = 3t V(h*V - u).
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Approxnmatlons to the Dmchlet to-Neumann
operator

[Lannes]

For any sufficiently regular ¢ such that

xeRY, h(x) &1+ e¢(x) > he >0,

one has for any k € N, ¢ > 0 and 1 € (0,1],

v G/ [eClt + V- (1 + Q) V)| i < Ciera it |V s
’gH[EC]w +V- (hvw) —uV- (hT[h]vfl/}) ’H" < Ck+6 Mz |v¢‘Hk+5)
\/ ‘g“[(fc:ld} +V- (h( Id +MT[h])_1V1/J) ’Hk < Ck+6 M2 |v¢’Hk+57

with Cx = C(k, %, |e¢|,,,) and Thlu & 52V (H3V - u).

Plugging these approximations in the water waves equations yields...
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Historical shallow-water models
The Saint-Venant system

¢+ V- ((1+eC)u) =0
Ju+V(+¢e(u-V)u=0,

with u = V¢ (or u o 1+c< fég Vx®(-, z)dz).

(SV)

The Green—Naghdi system

8tC+ V- (hU) = O,

(Id+uTTh))Oeu + V¢ + e(u - V)u + 1cQlh,u] = 0
where h % 1 + ¢, Qlh,u] o %V<h3((u V)V -u)— (V- u)2)), and
Tihu Y SEV(hV - u) with u = (Id+4T[h]) " V4 (or u = u).

(GN)



Shallow water models
[ o]

Historical shallow-water models
The Saint-Venant system

¢+ V- ((1+eC)u) =0, (sV)
du+V(+e(u-V)u=0,
withu=Vy oru=u% T f:cl Vi®(-, z) dz).

A special case of compressible Euler equations. Finite-time singularity formation.

Used when the problem features dry zones, discontinuities (dam-break), etc.

The Green—Naghdi system
0¢¢ + V- (hu) =0,
{ (Id +uTTh])Oeu + V¢ + e(u - V)u + 1cQlh,u] = 0
where h &' 1+ e, Qfh,u] = o *1V<h3((u V)V -u)— (V- u)2)), and
Tihu Y SEV(hV - u) with u = (Id+4T[h]) " V4 (or u = u).

Explicit famlly of solitary waves. Globally well-posed?
A ot of activity around (GN) recently.

(GN)
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Fully rigorous justification

The full justification of a model typically stems from the combination of
@ Consistency
Regular solutions to the water waves system satisfy approximately the model
@ Well-posedness

Existence and control of solutions on a relevant time interval

© Stability

Control of the difference between exact and approximate solutions of the model

~s Control of ¢, the difference between the solution to the water waves
system and the corresponding solution to the model.
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Fully rigorous justification

The full justification of a model typically stems from the combination of
@ Consistency
Regular solutions to the water waves system satisfy approximately the model
@ Well-posedness

Existence and control of solutions on a relevant time interval

© Stability

Control of the difference between exact and approximate solutions of the model

~s Control of ¢, the difference between the solution to the water waves
system and the corresponding solution to the model.

The Saint-Venant system is a quasilinear hyperbolic symmetrizable system.
~~[Friedrichs,Garding,Kato '50s] WP and Stability in H*(R?)1*9 s > 1+ d/2

‘QSV|Hkr§/‘ t, tgl/&.




About the title \\/ater waves and ripples Shallow water models Higher order models
ST 16 00000

FuIIy rigorous JUStlflcatIOI‘l

The full justification of a model typically stems from the combination of
@ Consistency
Regular solutions to the water waves system satisfy approximately the model
@ Well-posedness

Existence and control of solutions on a relevant time interval

© Stability

Control of the difference between exact and approximate solutions of the model
~+ Control of ¢, the difference between the solution to the water waves
system and the corresponding solution to the model.
The Green—Naghdi system is a “quasilinear hyperbolic symmetrizable system”.
~~ [Li '06, Fujiwara&Iguchi '15] WP and Stability in HS(R?) x X5, s > 1+ d/2

Xsdéf{u : ’U2 def‘

u

HS—l—u‘V

5<oo}.

’eGN‘HkXxks,“? i f§1/€~
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Hyperbolic reformulation

Recall The Green—Naghdi system

0:¢C+V-(hu) =0,

e (hu) (GN)

(1d 44 TTh])Oeu + V¢ + e(u - V)u + peQlh,u] = 0,

where h €' 1 4 ¢¢, T[hlu = 52V(KV - u) and
def _

Q[h, u] & 3—h1v(h3((u V)V -u) — (V- u)2)).
In numerical simulations, we need to solve at each timestep (for u)

(Id+4TTh)u = v.

The Green—Naghdi system can be written as
0t( + V- (hu) =0,
Otu+ V( +e(u-V)u+ 5V(hg) =0, (GN)
%:(')thr u-Vy, v=0(+cu-V{=—hV-u

3 evolution equations + constraint. ~ relaxation methods.
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Hyperbolic reformulation
Recall The Green—Naghdi system
{ OtC + V- (hu) =0,

(1d 44 TTh])Oeu + V¢ + e(u - V)u + peQlh,u] = 0, (GN)

where h &' 1 + e¢, T[hlu = 32 V(h3V - u) and

Ofh, u] & g—,}V(h3((u V)V -u) — (V- u)2)>.

In numerical simulations, we need to solve at each timestep (for u)
(Id+uTTh)u = v.

The Green—Naghdi system can be written as
0t + V- (hu) =0,
Otu+ V(+ e(u-V)u+ 4V(hg) =0, (GN)
$=0v+eu-Vy, v=0:+eu-V(=—hV-u

3 evolution equations + constraint. ~~ relaxation methods.
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Hyperbolic reformulation
The Green—Naghdi system can be written as
0t( + V- (hu) =0,
Otu + V(¢ 4+ e(u-V)u+ 4V(hg) =0, (GN)
T =0v+eu-Vy, v=0( +eu-V(=—hV-u

3 evolution equations + constraint. ~ relaxation methods.
[Favrie& Gavrilyuk '17] proposed
¢+ V- ((14e)u) =0,
D+ VC+ c(u-V)u - 4V (2 (n-¢)) =0,
Otw +cu-Vw = —p(n - <),

Om+eu-Vn=w.

(FG)

Quasilinear system of balance laws, singular limit X > 1 and ;1 < 1.
[VD '19]: rigorous justification for well-prepared initial data and \ > 71

‘QFG‘Hkxxk S(,UZ—FIU _1)t7 tsl/e' J
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Toy models
Order 1 Order 0
6th - 0, 8th - 0
Oeu+ Lhou =0 Oeu+ thu=0

—u —u
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@ Higher order models
@ A unified framework

@ Interfacial waves

Water waves and ripples

Shallow water models
000000 00000
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A first method

Recall we (and [Lagrange,Boussinesq,Raerigh]) had an expansion of the
Dirichlet-to-Neumann operator

«(t.)
G'eCly = —uV - </_1 Vx¢(-72)d2>

with ® solution to

¢
& + 1l]eC]P = 9P, leC]P(-, z / / AP(-,2")dZ" dZ.

M——

N
& = (—pllech)<y + O,

k=0
This yields to extended Green—Naghdi systems

The loss of derivatives is 2N + p for some p. No hope of convergence
when N — oo, by the modal analysis.
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A first method

Recall we (and [Lagrange,Boussinesq,Rayleigh]) had an expansion of the
Dirichlet-to-Neumann operator

¢(t,)
GheCly = —pV - (/1 Vi®(-, 2) dz>

with ® solution to

About the title Water waves and ripples Shallow water models Higher order models

O+ plec]® =1, L]l z /C/ AD(-,2")d2" d7. J

N
® = (—ulleC)) v + 0N,
k=0

This yields to extended Green—Naghdi systems [Matsuno '15,'16].

X The loss of derivatives is 2N + p for some p. No hope of convergence
when N — oo, by the modal analysis.
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A second method

We have another expansion of the Dirichlet-to-Neumann operator

N

G [eCle =Y K dGIOC, -, Q)b + O(MTH).

k=0

Plugging the truncated expansion into the Hamiltonian yields a hierarchy of
models [Craig&Sulem '93] and also [Dommermuth&Yue '87, West et al. '87].

This is known as the high-order spectral method.

The series converge (shape-analyticity of G*)
Each of the models could be ill-posed
Well-posedness can be restored without any cost
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A second method

We have another expansion of the Dirichlet-to-Neumann operator

G/l = Z K EGH(C -, O+ O(MHY).

Plugging the truncated expansion into the Hamiltonian yields a hierarchy of
models [Craig&Sulem '93] and also [Dommermuth&Yue '87, West et al. '87].

This is known as the high-order spectral method.

V" The series converge (shape-analyticity of G/)
X Each of the models could be ill-posed [Ambrose, Bona&Nicholls '14]
V" Well-posedness can be restored without any cost [VD&Melinand]
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The how-to guide to all (7) other methods

@ Select a variational formulation of the Laplace problem

AP + 020 =0 in {(x,2), -1 <z <e(t,x)},
¢ = ¢ on {(sz)v zZ = GC(t’X)}’
0,¢=0 on {(x,z), z=—1}.

@ Select a vertical distribution {W;(x, z,e()}; and define the
“finite-dimensional” vector space

N
V= {(D, O(t,x,2) =D i(x, t)Wj(x, 2, 6C(t,x))} .

i=0

© Define &7 as the Galerkin approximation of the variational problem.
@ Plug in the D2N operator, then the Hamiltonian.

© Use Hamilton's equations and enjoy.
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An example

V = {CD d(t,x, z) Zqﬁ,xt xzeC(tx))}

Setting V;(x, z, e((t,x)) = (z + 1)2’ (motivated by the [Boussinesq,Rayleigh]
shallow-water expansion) yields the Isobe—Kakinuma model

atg + EIN:OV (gi: V(ﬁ,) - , -
0t + ¢+ (XN 2ih%6) (1o V - (£ V) (1K)
+ 5(I1 /L PPVl + L(TiL, 21 4;)?) =0,

with h =1+ ¢C and {¢i}icqo,1,...,n} Solution to

N i 4ij i+2j— _
Zj:o( (2J+1)(2I+2J+1)h2 +21+1A¢J w 2:+2§ 1h2 o 1¢j> =0
Vie{l,...,N},
Z,I'V:o h2i¢i - ¢
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Water waves and ripples
000

Shallow water models
000

Higher order models
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An example
the Isobe—Kakinuma model

B+ YN, V- (ELVe) =0,

21+1

aw+<+dz£2m%mgﬂ£V(W“V@) (IK)

2_/+1

+5(1 2K, V2 + LT, 2ih%1¢)2) =0,

with h =1+ ¢C and {¢i}icqo,1,...,n} SOlution to

N I 4ij i j— _
O ( mhz 2N — i pRit2j 1¢j) 0

,u 2i4+2j—1
Vie{l,...,N},
Z,N:o hzid)i = 1.

Isobe—Kakinuma = (Hyperbolic) X (Elliptic )
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An example

the Isobe—Kakinuma model
0C+ Lo V- (557 V1) =0,

atw+c+e(2” 2/h2'¢,)(z” V(551 Ve) (1K)
(\ZN RiIV$i2 + LT, 202 1)?) =

with h =1+ ¢C and {¢;}icqo,1,..,n} SOlution to

N 2 2i4-2j+1 L1 4 2i4+2j—1 4\ _
Zj:O (_(2j+1)(2i+2j+1)h T A, u2i+2j71h e ¢J) =0
Vie{l,...,N},
N 2
Z,‘:o h¢; = 9.
Other models with similar features can be derived with other choices for {W;(x, z, €{) };

[Athanassoulis& Belibassakis '99][Lynett&Liu '04][Klopman,vanGroesen&Dingemans '10].
Yet only the Isobe—Kakinuma model benefits from [Iguchi '18].

v full justification as a model of order O(**2") (recall Padé approximants).
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A brief introduction to interfacial waves

Waves at the interface between two homogeneous layers is a natural
generalization of the water waves framework.
New phenomena arise.

@ Role of the density contrast
~ Boussinesq approximation, rigid-lid framework [VD '14,'16]
e Kelvin—Helmholtz instabilities (KH)
~ ill-posedness (!)
Do shallow water models predict the propagation of sharp interfaces?

@ V' The hydrostatic model (which extends the Saint-Venant model)
tames KH.

(WP when hy, ho > 0 and ye|us — ua|? < ao with some explicit ao(h1, h2) > 0).
@ X The Miyata—Choi—Camassa model (which extends Green—Naghdi)

overestimates KH. (modal analysis).
° The Kakinuma model (which extends the Isobe-Kakinuma model)
tames KH.

(WP when hyi, ho > 0 and ~ye|ur — uQ\2 < ay with ay — 0 as N — o).
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A brief introduction to interfacial waves

Waves at the interface between two homogeneous layers is a natural
generalization of the water waves framework.
New phenomena arise.

Shallow water models Higher order models

@ Role of the density contrast

~> Boussinesq approximation, rigid-lid framework [VD '14,'16]
o Kelvin—Helmholtz instabilities (KH)
~ ill-posedness (!)
Do shallow water models predict the propagation of sharp interfaces?
o V' The hydrostatic model (which extends the Saint-Venant model)
tames KH. [Guyenne,Lannes&Saut '10][Bresch&Renardy '11]
(WP when hy, ho > 0 and vye|ur — uz|* < a0 with some explicit ao(h1, h2) > 0).
e X The Miyata—Choi-Camassa model (which extends Green—Naghdi)
overestimates KH. [Jo&Choi '02][Lannes&Ming '15] (modal analysis).

o v The Kakinuma model (which extends the Isobe—Kakinuma model)
tames KH. [VD&lguchi '21]

(WP when hy, ho > 0 and vyeluy — uz|*> < ay with ay — 0 as N — o).



What we have done

@ Rigorously justified standard and widely used models for water waves
(Saint-Venant, Green—Naghdi);

@ Rigorously justified a hyperbolic relaxation of the Green—Naghdi system
(Favrie-Gavrilyuk);

@ Formally derived a class of high-order models, and rigorously justified a
family (/sobe-Kakinuma);

@ Ventured into the world of interfacial waves (Choi-~Camassa, Kakinuma).
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What we have not done

@ Compared high-order models and their limit towards the water waves system;

@ Entered the world of non-potential and/or continuously stratified flows;

@ Said anything on solutions besides local-in-time existence
(existence and stability of solitary waves, global existence vs finite-time singularity);

@ Used models for practical problems
(bottom reconstruction, fluid-structure interaction, etc.).
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What we have not done

@ Compared high-order models and their limit towards the water waves system;
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(existence and stability of solitary waves, global existence vs finite-time singularity);

@ Used models for practical problems
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Thank you for your attention
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