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The model
{ 0:¢ — | DY + ¢|D|(¢| D) + €V - ((Vy) = 0,
o+ C+ 5 (IVY]> = (ID[y)?) =0,
where |D| = (—A,)Y?, x € RY, d € {1,2}.

(WW2)

o (WW?2) is a model for water waves in infinite depth, assuming small
steepness, ¢ < 1.
o (WW?2) enjoys a Hamiltonian structure. In particular, it preserves

/C dx, /CV?,ZJ dx,

HalCo0) 5 [ ¢ ulDlu+ € (TU2 ~ (IDI0)?) e
Rd

e (WW?2) belongs to a hierarchy of models [Craig&Sulem '93] based on the
converging asymptotic expansion
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Numerical instabilities

Numerical integration of the systems in the hierarchy are easily and

efficiently implemented using Fourier spectral methods (as done in e.g.
[Guyenne&Nicholls '07-08])

In the computations [...] it was observed that spurious oscillations can
develop in the wave profile, due to the onset of an instability related
to the growth of numerical errors at high wavenumbers. [...] Similar
high-wavenumber instabilities were observed by other authors [...] who
used smoothing techniques to circumvent this difficulty.
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Proposed instability mechanism
[Ambrose,Bona&Nicholls '14] suggest that

{ 9:C = [D[y + €[D[(C|D[) + €V - (V) =0,

0ut -+ + 5 (V0 — (IDI)?) =0, ()
[and also (WW3)] is ill-posed in Sobolev spaces, based on
@ tailored numerical experiments;
@ the toy model
O + 5 (IVe|* = (ID[9)?) = 0. (toy)

[Ambrose,Bona&Nicholls '14]

For all s € [0, 3), the Cauchy problem associated with (toy) is ill-posed? in
He(T).

“there exists a sequence (1n)nen of smooth solutions to (toy) defined on
t € [0, T,)) and such that [¢4(0;-)|,, 0, T, \, 0 as n — oo and
|n(t, )|, = 00 as t /T,
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Quasi-linearization
{ 9:¢ — |D[p 4 ¢|DI(C|DJ)) 4 €V - (CVy) = 0,
Oy + ¢+ 5 (Ve — (ID[)?) =

Compensation Lemma [Saut&Xu '12]
Let d € {1,2}, to > d/2. Forall r <lands>ty+r,

|IDI(f]Dlg) + V - (fVg)

Hs—r*

Proof (d =1). Denote a = |D|(f|D|g) + Ox(fOxg). For & >0,
3(6) = [ (I&11€ = nl = (€ = ) F(n)B(E —n) dn =2 [ &(n — E)F(mE( —n) dny
Since [¢] < |n| and |n —&] < |n|, one has for all s > 0 and ' >0
(€3O < 2 Lo Inl[Fm)I(€ = m="1€ = nllg(€ — )l dn.
By Young's inequality and since (-)~% € L?(R), with r' =0,
|IDI(f|DIg) +V - (FVg)| o < |0xf | Ox8 | 1y
This shows the result, without restriction on r when d = 1. O
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Quasi-linearization
9:¢ — D[y + €|D[(C|D) + €V - (V) =0,
{ Oeb + ¢+ 5 (IVYI* = (ID[¥)?) = 0.
The principle part of the first equation is
0¢C — |DJy) + ¢|D|(¢|D[¢) + €V - ((Vy) = 0.
The principle part of the second equation is

Oetp +( + (Vo) - (V) — e(|D|9)(|DJ) = 0.

(WW2)

One recognizes Alinhac’s good unknown: L (\D\t)g

0:C — | DI + =0,
oY : (Q-WW2)
o) + ¢+ =0,

with
f —e(IDIQ)f —< (ID|v)| DI{(I1D[¥)f}
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Quasi-linearization
0:C — [D|¢ + ¢|D[(CID[Y) + €V - ((VY) = 0,
{ Oy + ¢+ 5 (IV¢I* = (ID[9)?) = 0.
The principle part of the first equation is
0¢C — |DJy) + ¢|D|(¢|D[¢) + €V - ((Vy) = 0.
The principle part of the second equation is

Ot + ¢+ e(V) - (V) — e(|DI¢)(IDI4) = 0.

(WW2)

One recognizes Alinhac’s good unknown: v o Y — e(|D[Y)¢:
{ 0 = Dl + ¢V - (CV¥) =0,

. : - (Q-WW2)
O + a[¢, YI¢ + (VY - Vi) =0,
with o

a[¢. 1 = £ —(IDIO)f —¢* (D) DI{(IDI¥)f} .

-

a(Q)f &
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Toy model
We mimic
al¢, ¢1F X £ — (IDIQ)F 2 (|D[$)| DI{(IDI)F} -
a(lf)f &
with
O =Dl =0, def o )
=€ D dx.
{ o+ (1—aflDhc=0, [0 ax. (o)



Context Instabilities Rectification

| Toy model
9 ~ DIy =0, def » )
= € D ‘
{ o+ (1-afiD)c=0, / (IDIY)? dx.  (toy)

Ill-posedness in H>(T9) [D-Melinand]

For all ¢ > 0, there exists (Cp, ¥n)nen sSmooth solutions to (toy) defined on
[0, T,) with

Vs eR, |Cnlg

Hs(T9) + ‘w” |t:0 Hs(Td) \( 0 and Tn \ 0 (n N OO),

and
Vs' € R, [¥"(¢,-)

Hs’('ﬂ‘d) — 00 (t /‘ Tn)

Proof. We put ¢,|,_, =0 and ¢, |,., = bncos(kg - x) + ¢, cos(k, - x) where

ko # 0, |kn| /00, by = [ks| %, ¢, = exp(—|ka|"/*).
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Toy model
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1Pl =0 Q def €2 D|4)? dx
{ oY+ (1 —a¥]|D])¢ =0, [v] /(’ [9)° dx.  (toy)

lll-posedness in H>(T9) [D-Melinand] J

Proof. We put ¢,|,_, =0 and ¢, |,_, = bncos(ko - x) + ¢, cos(kj, - x) where
kO 7é Ov |kn| /‘ OO, bn = |kn|_1/4’ Cn = exp(_|kn|l/4)'
By studying the system of ODEs on Fourier coefficients, we observe successively
o low-high instabilities: a[¥]ko| < 1 but a[to]lks| >2 = ca(t) > Lelvl”’,
@ high-high instabilities: ¢,(t) = |kn| ™! = af¢n]|ka] > 2 = c,(t) > %e“‘"'l/zt,

@ high-high blow-up: ¢,(t) 21 = d—dtiz;,’(’n > %\kn\lﬂi{(’n(t)z = blow-up.
L]
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Numerical validation
Numerical integration of (WW2) initial data
in( A
((t=0,x)=0 et ' (t=0,x)= (sin(x) + sm}({_;<)> exp(—|x|?).

surface deformation
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Figure: Time integration with ¢ = 1/5, K = 400.



Context Instabilities Rectification
000 0000e 0000000

Numerical validation
Numerical integration of (WW2) initial data

, _ sin(/x) 5
((t=0,x)=0 et ' (t=0,x)= (sin(x)+ i exp(—|x|).
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Figure: Blow-up time T* depending on K and e.
The toy model predicts T* oc (e<) "L if 2K > 1.
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Quasi-linearization
0:C — [D|¢ + ¢|D[(CID[Y) + €V - ((VY) = 0,
{ Oy + ¢+ 5 (IV¢I* = (ID[9)?) = 0.
The principle part of the first equation is
0¢C — |DJy) + ¢|D|(¢|D[¢) + €V - ((Vy) = 0.
The principle part of the second equation is

Ot + ¢+ e(V) - (V) — e(|DI¢)(IDI4) = 0.

(WW2)

One recognizes Alinhac’s good unknown: v o Y — ¢(|DY)¢:
{ 0 = Dl + ¢V - (CV¥) =0,

. : . (Q-WW2)
O + a[¢, YI¢ + (VY - Vi) =0,
with o

a[¢. 1 = £ —(IDIO)f —¢* (D) DI{(IDI¥)f} .

-

a(Q)f &
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Quasi-linearization
{ 0tC — D] + ¢|D[((JQ)ID|¢) + €V - ((JO) V) = 0,

WW2
Oep + ¢+ 5 (|VY> = (|Dl)?) = 0. ( )

The principle part of the first equation is
8¢C — | DI + €| DI((JO)[D[) + ¢V - ((JO) V) = 0.

The principle part of the second equation is

Ot + ¢+ e(V) - (V) — e(|DI¢)(IDI4) = 0.

One recognizes Alinhac’s good unknown: v o Y — e(|D[)(JQ):
d:¢ — D[ ((JOVY) =
{ = 1Dl + eV (J)Ve) =0, (QWW2)
Ort) + ay[C, UIC + ¢(Ve - Vi) =0,

with
def

a6 UIF = £ = «(IDIQ)JF —¢* (|D[)JIDI{(|DI¥)Jf}

a(Q)If ®




Context Instabilities Rectification

,,,,, 00@0000

The regularized sysem
By plugging J = J(D) self-adjoint,
9:¢ — [D[Y + ¢[DI((J)D[¥) + eV - (JO) V) =0,
{ detp + ¢+ 53 (VY = (IDl)?) =0,

enjoys a canonical hamiltonian structure, with

HAC0) ™ 5 [ ¢ ulDlo -+ 00) (IV0F2 ~ (1D10)?) éx.

(RWW2)

Well-posedness [D-Melinand]

Let J = J(D) with J < {-)~!. Let s > d/2+1/2. For all

(Co,%0) € H3(RY) x H5t1/2(R9), there exists a unique maximal solution

(¢,) € C((= T, T*); H¥(RY) x H=1/2(RY)) to (RWW2), (C,¥)[.2s = (€0, th0)-
Moreover, if J < (-)~™, m > d/2+ 3/2 and € small enough, then

T, = T* = +o0.

Proof. Compensation lemma [Saut&Xu'12] + Duhamel formula.
For ¢ small enough, Hi(¢,v) ~ Miz + HD\l/zw}iz is preserved. O
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The cost of regularizing
Consistency [D-Melinand]

If J = Jo(6D) with Jo € L®(R9) and |- |7%(1 — Jp) € L=°(RY), then for all § > 0,
s> d/2 and (¢, ) € C([0, T]; Hmx(s+E+1s+2)(Rd) 5 Hmax(st+£+3)(R9)) solution
to (RWW?2), (¢, 1)) satisfies (WW) up to remainder terms

HSXHS+% N (lC Hs+1)7

He s HoS Sed (|< Hs+z+%)~

Hs+2 + ||D|1/2
Hs+e+1 + ’V¢

[Ro

"

Proof.

For Ry, [Alvarez-Samaniego&Lannes'08].
For RJ,|f*Jf|H5§Cg(5£|fHS,WIth CZ—H 17./0 ’L‘X" [
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The cost of regularizing
Consistency [D-Melinand]
If J = Jo(6D) with Jo € L®(R9) and |- |7%(1 — Jp) € L=°(RY), then for all § > 0,

s> d/2 and (¢, ) € C([0, T]; Hmx(s+E+1s+2)(Rd) 5 Hmax(st+£+3)(R9)) solution
to (RWW?2), (¢, 1)) satisfies (WW) up to remainder terms

s D2
{RO HSXHS+% ~ € C Hs+2 + D ,(/} Hs+1 )
< 4
Ry oy et S €05 ([C] peren + [ V] erery)-
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Error between (RWW?2) and (WW): smooth i.d. (left) and non-smooth i.d. (right).
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The gain of regularizing

Large time well-posedness [D-Melinand]

Let Jo = Jo(|D|) with (-)71Jy € L=, ()VJ € L®. Lets>d/2+2,seN, C>1
and M > 0. There exists Ty > 0 such that for all ¢ > 0, for all
(Co,100) € HS(RY) x Ht2 (RY) with

0 < Mo < ¢(|¢o

w + 1D 240],) < M,

and for all § > eMp, one has: for all J = Jy(dD), there exists a unique
(¢, %) € C([0, To/(cMp)]; H* x H=*2) solution to (RWW2), (¢, ) |,_, = (Co, o),

with

sup (|¢(t, )5 + [1D1M29(t, )

te[f To/(EMo),To/(EMo)]

2

2) < C (6 2.
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The gain of regularizing
Large time well-posedness [D-Melinand]

Let Jo = Jo(|D|) with (-)71Jy € L=, ()VJ € L®. Lets>d/2+2,seN, C>1
and M > 0. There exists Ty > 0 such that for all ¢ > 0, for all
(Co,100) € HS(RY) x Ht2 (RY) with

0 < Mo < ¢(|¢o

w + 1D 240],) < M,

and for all § > eMp, one has: for all J = Jy(dD), there exists a unique

(¢, ) € C([0, To/(eMo)]; HS x H**3) solution to (RWW?2), (¢, %) ],_, = (o, o),
with

sup (1¢(& ), + IDIM2(, ) [2.) < € (6o + [1D12400]5,) -

te[f To/(EMo),To/(EMo)]

Proof.

If ¢ 2 1, Duhamel formula = Ty =~ 4.
If ¢ < 1, energy method = To ~ min({1,d/¢}).
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Energy method
9:C = [D|¢ + ¢|DI(JO)ID[Y) + €V - (JOVY) = 0,
{ Oet) + ¢ + 53 (IVY]? = (IDI¥)?) = 0.
The principle part of the first equation is
0:C — DI+ ¢[D|((JC) [ DI9) + €V - (JO) V) = 0.
The principle part of the second equation is
Ontp+ C+ (V) - J(VY) = e(ID|$) (| DI¥) = 0.
One recognizes Alinhac’s good unknown: 1) &t Y — e(|D[Y)(JC):
¢ — || + €V - (J) V) =0,
{ Out + ay[¢,¢IC + €(Vep - V) =0,

(RWW2)

(Q-RWW2)

with
[ YIf € F — o(|DIC)IF — 2(D])I2|DI{(|DI9)F )

and one has )
min(e, 625_1) <1l = (W[ﬁaﬂ]f? f)LZ 2 %‘f‘LT
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Numerical validation
In numerical simulations, we observe a dichotomy:

@ If § > dcrit., then large time stability.
@ If § < dcrit., then rapid blow-up.

R

o

10 °

6 (in log scale)

-2.0 -15 -1.0 -0.5
€ (in log scale)

Figure: Critical value .., depending on e.
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Conclusion and perspectives

Conclusion

We exhibited the instability mechanism induced by (WW?2), and proposed
a "rectification” which (for ¢ well-chosen)

@ does not harm the precision (in the sense of consistency) of the model;
@ restores large time well-posedness (and hence convergence);

@ is costless form the point of view of numerical discretization.

Perspectives
@ Results are proved in deep but finite depth, not in shallow water.
@ We have not proved ill-posedness.
e We would like to extend the analysis to (WWWN) with N arbitrary.




Conclusion and perspectives

Conclusion

We exhibited the instability mechanism induced by (WW?2), and proposed
a "rectification” which (for ¢ well-chosen)

@ does not harm the precision (in the sense of consistency) of the model;
@ restores large time well-posedness (and hence convergence);

@ is costless form the point of view of numerical discretization.

Perspectives
@ Results are proved in deep but finite depth, not in shallow water.
@ We have not proved ill-posedness.
e We would like to extend the analysis to (WWWN) with N arbitrary.

Thank you for your attention
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