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VINCENT DUCHÊNE†, SAMER ISRAWI‡ , AND RAAFAT TALHOUK‡

Abstract. This study deals with asymptotic models for the propagation of one-dimensional
internal waves at the interface between two layers of immiscible fluids of different densities, under
the rigid lid assumption and with a flat bottom. We present a new Green–Naghdi type model in the
Camassa–Holm (or medium amplitude) regime. This model is fully justified, in the sense that it is
consistent and well-posed and that its solutions remain close to exact solutions of the full Euler system
with corresponding initial data. Moreover, our system allows one to fully justify any well-posed and
consistent lower order model, and, in particular, the so-called Constantin–Lannes approximation,
which extends the classical Korteweg–de Vries model to the Camassa–Holm regime.
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1. Introduction.

1.1. Presentation of the problem. In the present paper, we study the prop-
agation of internal waves in a two-fluid system, which consists in two layers of immis-
cible fluids of different densities, under only the influence of gravity. The domain of
the two layers is infinite in the horizontal space variable (assumed to be of dimension
d = 1) and delimited above by a flat, rigid lid and below by a flat bottom. Moreover,
we assume that the fluids are homogeneous, ideal, incompressible, and irrotational.
We let the reader refer to [24], and references therein, for a good overview of the ins
and outs concerning density-stratified fluids in oceanography, and the relevance of our
setup as a model for such a system.

The governing equations describing the evolution of the flow under the aforemen-
tioned configuration may be reduced to a system of two evolution equations located at
the interface between the two layers (following a strategy initiated in the water-wave
configuration in [43, 16], and achieved in the bifluidic case in [7]), named the full Euler
system. However, the study of this system is extremely challenging. In particular, the
well-posedness of the Cauchy problem has been answered satisfactorily (that is, with
a predicted lifespan of solutions consistent with physical observations) only recently;
see [31].

Under these circumstances, a great deal of interest has been drawn to asymptotic
models, in order to predict accurately the main behavior of the system, provided some
parameters describing the domain and nature of the flow are small. Parameters of
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interest include

μ =
d21
λ2
, ε =

a

d1
, δ =

d1
d2
, γ =

ρ1
ρ2
, Bo =

g(ρ2 − ρ1)λ
2

σ
,

where a is the maximal vertical deformation of the interface with respect to its rest
position; λ is a characteristic horizontal length; d1 (resp., d2) is the depth of the upper
(resp., lower) layer; and ρ1 (resp., ρ2) is the density of the upper (resp., lower) layer, g
the gravitational acceleration and σ the interfacial tension coefficient. Mathematically
speaking, μ and ε measure, respectively, the amount of dispersion and nonlinearity
which will contribute to the evolution of internal waves, and Bo−1 (the Bond number)
expresses the ratio of surface tension forces to gravitational forces. It would be quite
tedious to make an attempt at acknowledging every work on this aspect, but let us
introduce some earlier results directly related to the present paper.

Shallow water (μ � 1) asymptotic models for unidimensional internal waves have
been derived and studied in the pioneering works of [37, 34, 35]. More recently, Choi
and Camassa developed models with weakly (ε = O(μ)) and strongly (ε ∼ 1) nonlinear
terms, respectively, in [11, 12] with horizontal dimension d = 2. They obtain bifluidic
extensions of the classical shallow water (or Saint-Venant [17]), Boussinesq [9, 10], and
Green–Naghdi [40, 22] models. Similar systems have been derived in [38] (with the ad-
ditional assumption of γ ≈ 1) and in [15] (using a different approach, i.e., making use
of the Hamiltonian structure of the full Euler equations). However, the aforementioned
results are limited to the formal level. Let us mention now the work of Bona, Lannes,
and Saut [7] who, following a strategy initiated in [4, 5] in the water-wave setting (one
layer of fluid, with free surface), derived a large class of models for different regimes,
under the rigid-lid assumption, neglecting surface tension effects and with flat bottom.
(See also [2], where a topography and surface tension is added to the system, and [18],
where the rigid-lid assumption is removed.) The same technique has been used to de-
rive Green–Naghdi models [20, 21] as well as intermediate long wave (ε ∼ √

μ and
δ ∼ √

μ) systems [42]. The models derived in these papers are systematically justified
by a consistency result: roughly speaking, sufficiently smooth solutions of the full
Euler system satisfy the equations of the asymptotic model, up to a small remainder.

Yet the consistency is only one of the properties that an asymptotic model shall
satisfy, for its validity to be ascertained. Indeed, it leaves two important questions
unanswered: for a large class of initial data (typically bounded in suitable Sobolev
spaces),

1. (well-posedness) do the full Euler system, as well as the asymptotic model,
define a unique solution on a relevant time scale?

2. (convergence) is the difference between these two solutions small over the
relevant time scale?

As mentioned earlier, Lannes has recently proved [31] that the Cauchy problem for
bifluidic full Euler system is well-posed in Sobolev spaces over large time, in the
presence of a small amount of surface tension. Thus the full justification of a consistent
system of equation as an asymptotic model, in the sense described above, follows from
its well-posedness and a stability result; see [29, Appendix C] for a detailed discussion
and state of the art in the water-wave setting.

A striking discrepancy between the water-wave and the bifluidic setting is that in
the latter, large amplitude internal waves are known to generate Kelvin–Helmholtz in-
stabilities, so that surface tension is necessary in order to regularize the flow. A crucial
contribution of [31] consists in asserting that “the Kelvin–Helmholtz instabilities ap-
pear above a frequency threshold for which surface tension is relevant, while the main
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242 VINCENT DUCHÊNE, SAMER ISRAWI, AND RAAFAT TALHOUK

(observable) part of the wave involves low frequencies located below this frequency
threshold.” It is therefore expected that the surface tension does not play an essential
role in the dominant evolution of the flow, especially in the shallow water regime.
This intuition is confirmed by the fact that well-posedness and stability results have
been proved for the bifluidic shallow-water system [23], a class of Boussinesq-type
systems [19] as well as intermediate long wave systems [42], without surface tension
and under reasonable assumptions on the flow. (Typically, the shear velocity must be
sufficiently small.)

However, the original bifluidic Green–Naghdi model (or, more precisely, the lin-
earized system about solutions of constant nontrivial shear velocity) is known to be
unconditionally ill-posed in the absence of surface tension [33], due to growing modes
appearing above a certain frequency threshold. These instabilities are therefore sim-
ilar to the Kelvin–Helmholtz instabilities of the full Euler system but are actually
wilder; see section 4.2 for more details. Let us recall that the Green–Naghdi model
consists in a higher order extension of the shallow water equation, and thus is consis-
tent with precision O(μ2) instead of O(μ), and allows strong nonlinearities (whereas
Boussinesq models are limited to the long wave regime: ε = O(μ)). As a consequence,
and conversely to the aforementioned models, it contains nonlinear dispersive terms
in the form of high order, nonlinear differential operators, which are responsible for
these instabilities. Various regularized models, that is, the systems with the same pre-
cision as the original Green–Naghdi model in the sense of consistency but improved
stability behavior, have been proposed in the literature; see [3, 14, 8] and references
therein. However, these works are restricted to the formal level and do not provide
the complete justification in the sense described above.

In this work, we present a new Green–Naghdi type model in the Camassa–Holm
(or medium amplitude) regime, ε = O(

√
μ), for the propagation of internal waves.

More precisely, the regime of validity of our model is, with fixed μmax,M, δ−1
min, δmax <

∞,

0 < μ ≤ μmax, 0 ≤ ε ≤ min(M
√
μ, 1), δmin ≤ δ ≤ δmax, 0 ≤ γ < 1.

Our model is fully justified: we prove that the full Euler system is consistent with
our model and that our system is well-posed (in the sense of Hadamard) in Sobolev
spaces and stable with respect to perturbations of the equations. These results hold
identically without or with (small) surface tension.

In order to obtain these results, we write our system as a quasilinear infinite di-
mensional first order system, that is, a system defined by matrices whose coefficients
are differential operators. A similar strategy was used in [32, 25] for the Green–
Naghdi system in the water wave situation (one layer of fluid), and later on for various
Boussinesq systems in [39]. The system we obtain is not symmetric but has a pleasant
structure, which allows one to decompose it as the sum of a symmetrizable principal
part and a lower order part that is genuinely controlled in the energy space thanks
to the assumption of the Camassa–Holm regime and using the extra regularity of the
energy space provided by the dispersive terms. At this point, direct well-posedness
results are not readily available in the literature, and the conventional technique of a
priori estimates in high regularity Sobolev spaces toward the existence of solution and
stability of our system has to be precisely conducted. The control of the difference
between a solution of the full Euler system and the solution of our model with corre-
sponding initial data is then a direct consequence of the well-posedness, stability, and
consistency of our model.

D
ow

nl
oa

de
d 

01
/1

4/
15

 to
 1

29
.2

0.
36

.2
26

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A NEW MODEL FOR THE PROPAGATION OF INTERNAL WAVES 243

Let us emphasize that in addition to its relevance as an asymptotic model, our
system offers an important tool for the justification of other models. Indeed, it suffices
to check that a given approximate solution solves our system up to a small remainder
to ensure that it is truly close to the solution of our new model, and therefore to
the corresponding solution of the full Euler system. Such strategy has been used
in particular in [6] in order to rigorously justify the historical Korteweg–de Vries
equation as a model for the propagation of surface wave in the long wave regime (with
a Boussinesq model as the intermediary system); and this result has been extended
to the bifluidic case in [19]. Higher order models in the Camassa–Holm regime have
been introduced and justified in the sense of consistency in [13] in the water-wave
case, and in [20] in the bifluidic case. We are therefore able to fully justify the latter
model, in the sense described above.

1.2. Organization of the paper. The paper is organized as follows.
Section 2: The full Euler system.
Section 3: Main results.
Section 4: Construction of our model.
Section 5: Preliminary results.
Section 6: Linear analysis.
Section 7: Proof of existence, stability, and convergence.
Section 8: Full justification of asymptotic models.
Appendix A: Product and commutator estimates in Sobolev spaces.

We start by introducing in section 2 the nondimensionalized full Euler system, de-
scribing the evolution of the two-fluid system we consider. In section 3, we present our
new model, and we announce the main results of this paper. This asymptotic model
is precisely derived and motivated in section 4. Sections 5 and 6 contain the necessary
ingredients for the proof of our results, which are completed in section 7. In section 8,
we explain how our system allows us to justify any well-posed and consistent lower
order model. Finally, the title of Appendix A is self-explanatory.

We conclude this section with an inventory of the notation used throughout the
present paper.

Notation. In the following, C0 denotes any nonnegative constant whose exact
expression is of no importance. The notation a � b means that a ≤ C0 b.

We denote by C(λ1, λ2, . . . ) a nonnegative constant depending on the parameters
λ1, λ2, . . . and whose dependence on the λj is always assumed to be nondecreasing.

We use the condensed notation

As = Bs + 〈Cs〉s>s

to express that As = Bs if s ≤ s and As = Bs + Cs if s > s.
Let p be any constant with 1 ≤ p < ∞ and denote Lp = Lp(R) the space of all

Lebesgue-measurable functions f with the standard norm

|f |Lp =

(∫
R

|f(x)|pdx
)1/p

<∞.

The real inner product of any functions f1 and f2 in the Hilbert space L2(R) is denoted
by

(f1, f2) =

∫
R

f1(x)f2(x)dx.

The space L∞ = L∞(R) consists of all essentially bounded, Lebesgue-measurable
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244 VINCENT DUCHÊNE, SAMER ISRAWI, AND RAAFAT TALHOUK

functions f with the norm

|f |L∞ = ess sup |f(x)| <∞.

We denote byW 1,∞(R) = {f, s.t. f, ∂xf ∈ L∞(R)} endowed with its canonical norm.
For any real constant s ≥ 0, Hs = Hs(R) denotes the Sobolev space of all tempered
distributions f with the norm |f |Hs = |Λsf |L2 <∞, where Λ is the pseudodifferential
operator Λ = (1− ∂2x)

1/2.
For a given μ > 0, we denote by Hs+1

μ (R) the space Hs+1(R) endowed with the
norm ∣∣ · ∣∣2

Hs+1
μ

≡ ∣∣ · ∣∣2
Hs + μ

∣∣ · ∣∣2
Hs+1 .

For any functions u = u(t, x) and v(t, x) defined on [0, T )×R with T > 0, we denote the
inner product, the Lp-norm, and especially the L2-norm, as well as the Sobolev norm,
with respect to the spatial variable x, by (u, v) = (u(t, ·), v(t, ·)), |u|Lp = |u(t, ·)|Lp ,
|u|L2 = |u(t, ·)|L2 , and |u|Hs = |u(t, ·)|Hs , respectively.

We denote L∞([0, T );Hs(R)) the space of functions such that u(t, ·) is controlled
in Hs, uniformly for t ∈ [0, T ):∥∥u∥∥

L∞([0,T );Hs(R))
= ess sup

t∈[0,T )

|u(t, ·)|Hs < ∞.

Finally, Ck(R) denote the space of k-times continuously differentiable functions.
For any closed operator T defined on a Banach space X of functions, the commu-

tator [T, f ] is defined by [T, f ]g = T (fg)− fT (g) with f , g and fg belonging to the
domain of T . The same notation is used for f an operator mapping the domain of T
into itself.

2. The full Euler system. We recall that the system we study consists in
two layers of immiscible, homogeneous, ideal, incompressible fluids only under the
influence of gravity (see Figure 1). We restrict ourselves to the two-dimensional case,
i.e., the horizontal dimension d = 1. The derivation of the governing equations of
such a system is not new. We briefly recall it below and refer to [7, 2, 20] for more
details.

Fig. 1. Sketch of the domain and governing equations.
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We assume that the interface is given as the graph of a function ζ(t, x) which
expresses the deviation from its rest position (x, 0) at the spatial coordinate x and at
time t. The bottom and surface are assumed to be rigid and flat. Therefore, at each
time t ≥ 0, the domains of the upper and lower fluid (denoted, respectively, Ωt

1 and
Ωt

2), are given by

Ωt
1 = { (x, z) ∈ R× R, ζ(t, x) ≤ z ≤ d1 },

Ωt
2 = { (x, z) ∈ R× R, −d2 ≤ z ≤ ζ(t, x) }.

We assume that the two domains are strictly connected, that is, there exists h > 0
such that

d1 − ζ(t, x) ≥ h > 0 and d2 + ζ(t, x) ≥ h > 0.

We denote by (ρ1,v1) and (ρ2,v2) the mass density and velocity fields of, respec-
tively, the upper and the lower fluid. The two fluids are assumed to be homogeneous
and incompressible, so that the mass densities ρ1, ρ2 are constant, and the velocity
fields v1, v2 are divergence free. As we assume the flows to be irrotational, one can
express the velocity fields as gradients of a potential, vi = ∇φi (i = 1, 2), and the
velocity potentials satisfy Laplace’s equation

∂2xφi + ∂2zφi = 0.

The fluids being ideal, they satisfy the Euler equations. Integrating the momen-
tum equation yields the so-called Bernoulli equation, written in terms of the velocity
potentials:

∂tφi +
1

2
|∇x,zφi|2 = −P

ρi
− gz in Ωt

i (i = 1, 2),

where P denotes the pressure inside the fluids.
From the assumption that no fluid particle crosses the surface, the bottom, or

the interface, one deduces kinematic boundary conditions, and the set of equations is
closed by the continuity of the stress tensor at the interface, which reads

�P (t, x)� ≡ lim
ε→0

(
P (t, x, ζ(t, x) + ε)− P (t, x, ζ(t, x) − ε)

)
= σk

(
ζ(t, x)

)
,

where k(ζ) = −∂x( 1√
1+|∂xζ|2

∂xζ) denotes the mean curvature of the interface and σ

the surface (or interfacial) tension coefficient.
Altogether, the governing equations of our problem are given by the following:

(2.1)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2xφi + ∂2zφi = 0 in Ωt
i, i = 1, 2,

∂tφi +
1
2 |∇x,zφi|2 = − P

ρi
− gz in Ωt

i, i = 1, 2,

∂zφ1 = 0 on Γt ≡ {(x, z), z = d1},
∂tζ =

√
1 + |∂xζ|2∂nφ1 =

√
1 + |∂xζ|2∂nφ2 on Γ ≡ {(x, z), z = ζ(t, x)},

∂zφ2 = 0 on Γb ≡ {(x, z), z = −d2},
�P (t, x)� = σk(ζ) on Γ,

where n denotes the unit upward normal vector at the interface.
The next step consists in nondimensionalizing the system. Thanks to an appro-

priate scaling, the two-layer full Euler system (2.1) can be written in dimensionless
form. The study of the linearized system (see [31], for example), which can be solved
explicitly, leads to a well-adapted rescaling.
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Let a be the maximum amplitude of the deformation of the interface. We denote
by λ a characteristic horizontal length, say, the wavelength of the interface. Then the
typical velocity of small propagating internal waves (or wave celerity) is given by

c0 =

√
g
(ρ2 − ρ1)d1d2
ρ2d1 + ρ1d2

.

Consequently, we introduce the dimensionless variables1

z̃ ≡ z

d1
, x̃ ≡ x

λ
, t̃ ≡ c0

λ
t,

the dimensionless unknowns

ζ̃(t̃, x̃) ≡ ζ(t, x)

a
, φ̃i(t̃, x̃, z̃) ≡ d1

aλc0
φi(t, x, z) (i = 1, 2),

and five dimensionless parameters,

γ =
ρ1
ρ2
, ε ≡ a

d1
, μ ≡ d21

λ2
, δ ≡ d1

d2
, bo =

g(ρ2 − ρ1)d
2
1

σ
.

Remark 2.1. We use here bo = μBo instead of the classical Bond number, Bo,
which measures the ratio of gravity forces over capillary forces. As we assume later
on that bo is bounded from below, this amounts to the assumption Bo−1 = O(μ).2

We conclude by remarking that the system can be reduced into two evolution
equations coupling Zakharov’s canonical variables [43, 16], namely, (withdrawing the
tildes for the sake of readability) the deformation of the free interface from its rest
position, ζ, and the trace of the dimensionless upper potential at the interface, ψ,
defined as follows:

ψ ≡ φ1(t, x, ζ(t, x)).

Indeed, φ1 and φ2 are uniquely deduced from (ζ, ψ) as solutions of the following
Laplace’s problems:⎧⎨

⎩
(
μ∂2x + ∂2z

)
φ1 = 0 in Ω1 ≡ {(x, z) ∈ R

2, εζ(x) < z < 1},
∂zφ1 = 0 on Γt ≡ {(x, z) ∈ R

2, z = 1},
φ1 = ψ on Γ ≡ {(x, z) ∈ R

2, z = εζ},
(2.2)

⎧⎨
⎩

(
μ∂2x + ∂2z

)
φ2 = 0 in Ω2 ≡ {(x, z) ∈ R

2, − 1
δ < z < εζ},

∂nφ2 = ∂nφ1 on Γ,
∂zφ2 = 0 on Γb ≡ {(x, z) ∈ R

2, z = − 1
δ }.

(2.3)

More precisely, we define the so-called Dirichlet–Neumann operators.

1We choose d1 as the reference vertical length. This choice is harmless, as we assume in the
following that the two layers of fluid have comparable depth: the depth ratio δ does not approach
zero or infinity.

2Such an assumption is very natural in the context of internal gravity waves in the ocean. For
example, using the values of the experiment of Koop and Butler [28] and a typical surface tension
coefficient σ = 0.005N.m−1 as in [31], one has

bo−1 =
σ

g(ρ2 − ρ1)d21
≈ 0.005

9.81(1 563− 998) × 0.069482
≈ 1.87× 10−4.
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Definition 2.2 (Dirichlet–Neumann operators). Let ζ ∈ Ht0+1(R), t0 > 1/2,
such that there exists h > 0 with h1 ≡ 1− εζ ≥ h > 0 and h2 ≡ 1

δ + εζ ≥ h > 0, and

let ψ ∈ L2
loc(R), ∂xψ ∈ H1/2(R). Then we define

Gμψ ≡ Gμ[εζ]ψ ≡
√
1 + μ|ε∂xζ|2

(
∂nφ1

) |z=εζ = (∂zφ1) |z=εζ − με(∂xζ)(∂xφ1) |z=εζ ,

Hμ,δψ ≡ Hμ,δ[εζ]ψ ≡ ∂x
(
φ2 |z=εζ

)
= (∂xφ2) |z=εζ + ε(∂xζ)(∂zφ2) |z=εζ ,

where φ1 and φ2 are uniquely defined (up to a constant for φ2) as the solutions in
H2(R) of the Laplace’s problems (2.2)–(2.3).

The existence and uniqueness of a solution to (2.2)–(2.3), and therefore the well-
posedness of the Dirichlet–Neumann operators, follow from classical arguments de-
tailed, for example, in [29].

Using the above definition, and after straightforward computations, one can
rewrite the nondimensionalized version of (2.1) as a simple system of two coupled
evolution equations, namely,

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tζ − 1

μ
Gμψ = 0,

∂t

(
Hμ,δψ − γ∂xψ

)
+ (γ + δ)∂xζ +

ε

2
∂x

(
|Hμ,δψ|2 − γ|∂xψ|2

)
= με∂xNμ,δ − μ

γ + δ

bo

∂x
(
k(ε

√
μζ)

)
ε
√
μ

,

where we denote

Nμ,δ ≡
(
1
μG

μψ + ε(∂xζ)H
μ,δψ

)2 − γ
(
1
μG

μψ + ε(∂xζ)(∂xψ)
)2

2(1 + μ|ε∂xζ|2) .

We will refer to (2.4) as the full Euler system, and solutions of this system will be
referred to as exact solutions of our problem.

3. Main results. We now present our new Green–Naghdi type model, which
we fully justify as an asymptotic model for the full Euler system (2.4), for a set of
dimensionless parameters limited to the so-called Camassa–Holm regime, which we
describe precisely below.

Let us introduce first the so-called shallow water regime for two layers of compa-
rable depths:

(3.1) PSW ≡
{
(μ, ε, δ, γ, bo) : 0 < μ ≤ μmax, 0 ≤ ε ≤ 1, δ ∈ (δmin, δmax),

0 ≤ γ < 1, bomin ≤ bo ≤ ∞
}

with given 0 ≤ μmax, δ
−1
min, δmax, bo

−1
min < ∞. The two additional key restrictions for

the validity of our model define the Camassa–Holm regime:
(3.2)

PCH ≡
{
(μ, ε, δ, γ, bo) ∈ PSW : ε ≤M

√
μ and ν ≡ 1 + γδ

3δ(γ + δ)
− 1

bo
≥ ν0

}

with given 0 ≤M, ν−1
0 <∞. We denote for convenience

MSW ≡ max
{
μmax, δ

−1
min, δmax, bo

−1
min

}
, MCH ≡ max

{
MSW,M, ν−1

0

}
.
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Our new system is

(3.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tζ + ∂x

(
h1h2

h1 + γh2
v̄

)
= 0,

T[εζ] (∂tv̄ + εςv̄∂xv̄) + (γ + δ)q1(εζ)∂xζ

+ ε
2q1(εζ)∂x

(
h2
1−γh2

2

(h1+γh2)2
|v̄|2 − ς |v̄|2

)
= −με 23 1−γ

(γ+δ)2 ∂x
(
(∂xv̄)

2
)
,

where h1 ≡ 1 − εζ (resp., h2 ≡ 1
δ + εζ) denotes the depth of the upper (resp., lower)

fluid, and v̄ is the shear mean velocity3 defined by

(3.4)
1

μ
Gμ[εζ]ψ = −∂x

(
h1h2

h1 + γh2
v̄

)
.

The operator T is as follows:

(3.5) T[εζ]V = q1(εζ)V − μν∂x

(
q2(εζ)∂xV

)
with qi(X) ≡ 1+κiX (i = 1, 2) and ν, κ1, κ2, ς are constants displayed in (4.10), (4.11),
and (4.14), later on.

Our model is fully justified by the following results.
Theorem 3.1 (consistency). For p = (μ, ε, δ, γ, bo) ∈ PSW, let Up ≡ (ζp, ψp) be

a family of solutions of the full Euler system (2.4) such that there exists C0, T > 0
with

ess sup
t∈[0,T )

(∣∣ζp∣∣
Hs+9

2
+

∣∣∂tζp∣∣
Hs+ 7

2
+

∣∣∂xψp
∣∣
Hs+11

2
+

∣∣∂t∂xψp
∣∣
Hs+9

2

)
≤ C0

for some s ≥ s0 + 1/2, s0 > 1/2, and uniformly with respect to p ∈ PSW. Moreover,
assume

(H1) ∃h01 > 0 such that h1 ≡ 1− εζp ≥ h01 > 0, h2 ≡ 1

δ
+ εζp ≥ h01 > 0.

Define v̄p as in (3.4). Then (ζp, v̄p) satisfies (3.3), up to a remainder R, bounded by∥∥R∥∥
L∞([0,T );Hs)

≤ (μ2 + με2) C1

with C1 = C(MSW, h
−1
01 , C0), uniformly with respect to the parameters p ∈ PSW.

For parameters in the Camassa–Holm regime (3.2), our system is well-posed (in
the sense of Hadamard) in the energy space Xs = Hs(R) ×Hs+1(R), endowed with
the norm

∀ U = (ζ, v)� ∈ Xs, |U |2Xs ≡ |ζ|2Hs + |v|2Hs + μ|∂xv|2Hs ,

provided the following ellipticity condition (for the operator T) holds:

(H2) ∃h02 > 0 s.t. inf
x∈R

(1 + εκ2ζ) ≥ h02 > 0 ; inf
x∈R

(1 + εκ1ζ) ≥ h02 > 0.

Theorem 3.2 (existence and uniqueness). Let p = (μ, ε, δ, γ, bo) ∈ PCH and
s ≥ s0 + 1, s0 > 1/2, and assume U0 = (ζ0, v0)

� ∈ Xs satisfies (H1), (H2). Then

3v̄ is equivalently defined as v̄ ≡ ū2−γū1, where ūi are the horizontal velocities integrated across

each layer: ū1(t, x) =
1

h1(t,x)

∫ 1
εζ(t,x) ∂xφ1(t, x, z) dz and ū2(t, x) =

1
h2(t,x)

∫ εζ(t,x)

− 1
δ

∂xφ2(t, x, z) dz.
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there exists a maximal time Tmax > 0 such that the system of equations (3.3) admits a
unique strong solution U = (ζ, v)� ∈ C0([0, Tmax);X

s)∩C1([0, Tmax);X
s−1) with the

initial value (ζ, v) |t=0 = (ζ0, v0) and that preserves the conditions (H1), (H2) (with
different lower bounds) for any t ∈ [0, Tmax).

Moreover, there exists T−1, C0, λ = C(MCH, h
−1
01 , h

−1
02 ,

∣∣U0

∣∣
Xs), independent of

p ∈ PCH, such that Tmax ≥ T/ε and one has the energy estimate

∀ 0 ≤ t ≤ T

ε
,

∣∣U(t, ·)∣∣
Xs +

∣∣∂tU(t, ·)∣∣
Xs−1 ≤ C0e

ελt .

If Tmax <∞, one has

|U(t, ·)|Xs −→ ∞ as t −→ Tmax,

or one of the two conditions (H1), (H2) ceases to be true as t −→ Tmax.
Theorem 3.3 (stability). Let (μ, ε, δ, γ, bo) ∈ PCH, s ≥ s0 + 1 with s0 > 1/2,

and assume U0,1 = (ζ0,1, v0,1)
� ∈ Xs and U0,2 = (ζ0,2, v0,2)

� ∈ Xs+1 satisfies (H1),
(H2). Denote Uj the solution to (3.3) with Uj |t=0 = U0,j.Then there exists constants
T−1, λ, C0 = C(MCH, h

−1
01 , h

−1
02 ,

∣∣U0,1

∣∣
Xs , |U0,2|Xs+1) such that

∀ 0 ≤ t ≤ T

ε
,

∣∣(U1 − U2)(t, ·)
∣∣
Xs ≤ C0e

ελt
∣∣U0,1 − U0,2

∣∣
Xs .

Finally, the following “convergence result” states that the solutions of our sys-
tem approach the solutions of the full Euler system, with the accuracy predicted by
Theorem 3.1.

Theorem 3.4 (convergence). Let p ≡ (μ, ε, δ, γ, bo) ∈ PCH and s ≥ s0 + 1 with
s0 > 1/2, and U0 ≡ (ζ0, ψ0)� ∈ Hs+N , N sufficiently large, satisfy the hypotheses of
Theorem 5 in [31]4, as well as (H1), (H2). Then there exists C, T > 0, independent
of p, such that

• there exists a unique solution U ≡ (ζ, ψ)� to the full Euler system (2.4), de-
fined on [0, T ] and with initial data (ζ0, ψ0)� (provided by Theorem 5 in [31]);

• there exists a unique solution Ua ≡ (ζa, va)
� to our new model (3.3), defined

on [0, T ] and with initial data (ζ0, v0)� (provided by Theorem 3.2);
• with v̄ ≡ v̄[ζ, ψ], defined as in (3.4),one has for any t ∈ [0, T ],∣∣(ζ, v̄)− (ζa, va)

∣∣
L∞([0,t];Xs)

≤ C μ2 t.

Remark 3.5. The above proposition is valid for time interval t ∈ [0, T/ε] with T
bounded from below, independently of p ∈ PCH, provided that a stronger criterion is
satisfied by the initial data; see criterion (5.5) and Theorem 6 in [31].

Remark 3.6. We would like to emphasize here that, contrarily to the full Euler
system, our model is well-posed even in the absence of surface tension. (The only
modification consists in setting bo−1 = 0 in the constants ν, κ1, κ2, ς .) Thus the
subtle regularizing effect of surface tension highlighted by Lannes in [31] does not
play a role in our model. See section 4.2, below for a more detailed discussion.

We conclude this section by asserting that our new model allows one to fully justify
any well-posed asymptotic model, consistent with our model (3.3) in the Camassa–
Holm regime.

Proposition 3.7. Consider (S) a system of equations such that

4In particular, it satisfies a stability criterion, which in the shallow water configuration (μ � 1)

can be roughly expressed as Υ ≡ ε4

4
bo

γ2(γ+δ)2

(1+γ)6
is sufficiently small ; see section 5.1.3 of [31].
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• the Cauchy problem for (S) is well-posed in Xr, r sufficiently large;
• for U0 ≡ (ζ0, v0)� ∈ Hs+N , N sufficiently large, the solutions of (S) satisfy
our model (3.3), up to a remainder R of size O(ι) in L∞([0, T ];Hs ×Hs).

Then under the assumptions of Theorem 3.4, the difference between the solution
of the full Euler system (2.4), U ≡ (ζ, ψ)�, and the solution of the asymptotic model
(S) with corresponding initial data, Ua ≡ (ζa, va)

�, is estimated as follows:∣∣(ζ, v̄[ζ, ψ])− (ζa, va)
∣∣
L∞([0,t];Xs)

≤ C(ι + μ2)t.

This procedure of full justification is precisely described in section 8 and applied
to the so-called Constantin–Lannes decoupled approximation model.

4. Construction of the model. This section is dedicated to the construction
of the model we study. The key ingredient for constructing shallow water asymptotic
models lies in the expansion of the Dirichlet-to-Neumann operators, with respect
to the shallowness parameter, μ; see Proposition 4.1, below. Thanks to such an
expansion, one is able to obtain the so-called Green–Naghdi model (for internal waves),
displayed in (4.6). This model has been introduced by one of the authors in [20], and
generalized in [21]. It is justified by a consistency result recalled in Proposition 4.2:
roughly speaking, any solution of the full Euler system satisfies the Green–Naghdi
asymptotic model up to a small remainder, of size O(μ2).

As we discuss in section 4.2, the Green–Naghdi system (4.6) develops Kelvin–
Helmholtz type instabilities at high frequencies (in absence of surface tension), which
advise against any attempt toward the well-posedness of this system. These instabili-
ties persist for the simplified model using the additional assumption of the Camassa–
Holm regime, ε = O(

√
μ), and withdrawing O(με2) terms. In section 4.3, we use sev-

eral additional transformations, similar to the well-known Benjamin–Bona–Mahony
trick, in order to produce an equivalently precise (that is, consistent of order O(μ2)
in the Camassa–Holm regime) but well-prepared model. This model is system (4.15)
and has been introduced previously as (3.3). The justification of this model, in the
sense of consistency, is stated in Theorem 4.4. The stronger results (well-posedness,
stability, convergence) described in section 3 are proved in subsequent sections.

4.1. The Green–Naghdi model. The following Proposition is given in [20]
(see also [21]), extending the result of [7].

Proposition 4.1 (expansion of the Dirichlet–Neumann operators). Set s ≥
s0+1/2, s0 > 1/2. Let ψ ∈ L2

loc be such that ∂xψ ∈ Hs+11/2(R), and ζ ∈ Hs+9/2(R).
Let h1 = 1 − εζ, h2 = 1/δ + εζ be such that there exists h > 0 with h1, h2 ≥ h > 0.
Then ∣∣∣∣ 1μGμψ − ∂x(h1∂xψ)

∣∣∣∣
Hs

≤ μ C1,(4.1) ∣∣∣∣ 1μGμψ − ∂x(h1∂xψ)− μ
1

3
∂2x(h

3
1∂

2
xψ)

∣∣∣∣
Hs

≤ μ2 C3,(4.2) ∣∣∣∣Hμ,δψ +
h1
h2
∂xψ

∣∣∣∣
Hs

≤ μ C0,(4.3) ∣∣∣∣Hμ,δψ +
h1
h2
∂xψ − μ

3h2
∂x

(
h32∂x

(
h1
h2
∂xψ

)
− h31∂

2
xψ

)∣∣∣∣
Hs

≤ μ2 C2(4.4)

with Cj = C( 1h , μmax,
1

δmin
, δmax,

∣∣ζ∣∣
Hs+3/2+j ,

∣∣∂xψ∣∣Hs+5/2+j ). The estimates are uni-
form with respect to the parameters ε ∈ [0, 1], μ ∈ [0, μmax], δ ∈ (δmin, δmax).
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Plugging these expansions into the full Euler system (2.4) and withdrawing O(μ2)
terms immediately yields an asymptotic Green–Naghdi model. This model is pre-
sented in [20] and justified in the sense of consistency. However, such a Green–Naghdi
model is only one of the varieties of models which satisfy such a property. In the fol-
lowing, we introduce an equivalent model, using as unknown (instead of ψ, the trace
of the upper velocity potential at the interface) the shear mean velocity, defined by

(4.5) v̄ ≡ ū2 − γū1,

where ū1, ū2 are the mean velocities integrated across the vertical layer in each fluid:

ū1(t, x) =
1

h1(t, x)

∫ 1

εζ(t,x)

∂xφ1(t, x, z) dz

and ū2(t, x) =
1

h2(t, x)

∫ εζ(t,x)

− 1
δ

∂xφ2(t, x, z) dz.

Equivalently (as shown in [20]), one has

1

μ
Gμ,εψ = −∂x

(
h1h2

h1 + γh2
v̄

)
.

Such a choice has been used in [11, 12], for example, and presents at least two
benefits. First, the equation describing the evolution of the deformation of the inter-
face is an exact equation and not a O(μ2) approximation. Indeed, one immediately
has from the full Euler system (2.4)

∂tζ =
1

μ
Gμ,εψ = −∂x

(
h1h2

h1 + γh2
v̄

)
.

What is more, the system obtained using mean velocities has a nicer behavior with
respect to its linear well-posedness; thus one can expect nonlinear well-posedness only
for the latter.

Altogether, several technical but straightforward computations yield the following
Green–Naghdi model:

(4.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tζ + ∂x

(
h1h2

h1 + γh2
v̄

)
= 0,

∂t

(
v̄ + μQ[h1, h2]v̄

)
+ (γ + δ)∂xζ +

ε

2
∂x

(
h21 − γh22

(h1 + γh2)2
|v̄|2

)

= με∂x
(R[h1, h2]v̄

)
+ μ

γ + δ

bo
∂3xζ ,

where we define

Q[h1, h2]V ≡ −1

3h1h2

(
h1∂x

(
h32∂x

(
h1 V

h1 + γh2

))
+ γh2∂x

(
h31∂x

(
h2 V

h1 + γh2

)))
,

R[h1, h2]V ≡ 1

2

((
h2∂x

(
h1 V

h1 + γh2

))2

− γ

(
h1∂x

(
h2 V

h1 + γh2

))2
)

+
1

3

V

h1 + γh2

(
h1
h2
∂x

(
h32∂x

(
h1 V

h1 + γh2

))

− γ
h2
h1
∂x

(
h31∂x

(
h2 V

h1 + γh2

)))
.
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This model has been derived in [20] (see also [21]) and justified in the sense of con-
sistency, as follows.

Proposition 4.2. For p = (μ, ε, δ, γ, bo) ∈ PSW, let Up ≡ (ζp, ψp) be a family
of solutions of the full Euler system (2.4) such that such that there exists C0, T > 0
with

ess sup
t∈[0,T )

(∣∣ζp∣∣
Hs+9

2
+

∣∣∂tζp∣∣
Hs+ 7

2
+

∣∣∂xψp
∣∣
Hs+11

2
+

∣∣∂t∂xψp
∣∣
Hs+9

2

)
≤ C0

for given s ≥ s0 + 1/2, s0 > 1/2, uniformly with respect to p ∈ PSW. Moreover,
assume that there exists h01 > 0 such that

h1 ≡ 1− εζp ≥ h01 > 0, h2 ≡ 1

δ
+ εζp ≥ h01 > 0.

Define v̄p as in (4.5) or, equivalently, by 1
μG

μ[εζp]ψp = −∂x( h1h2

h1+γh2
v̄p).

Then (ζ, v̄) satisfies (4.6), up to a remainder R, bounded by∥∥R∥∥
L∞([0,T );Hs)

≤ C1μ
2

with C1 = C(MSW, h
−1
01 , C0), uniformly with respect to the parameters p ∈ PSW.

Remark 4.3. In [20], the author works with bo−1 = 0. However, it is clear that
the results are still valid with the surface tension term, using∣∣∣∣∣−μbo ∂x

(
k(ε

√
μζ)

)
ε
√
μ

− μ

bo
∂3xζ

∣∣∣∣∣
Hs

≤ μ2ε2

bo
C(με2,

∣∣ζ∣∣
Hs+3),

where we used Lemma A.4. Of course, one could have simply kept the surface tension
term unchanged at this point, as in [21]. The smallness of surface tension, expressed
by bo−1 ≤ bo−1

min, is useful in the derivation of our new model, in the following
subsection.

4.2. Kelvin–Helmholtz instabilities. As discussed in the introduction, it is
known that the bifluidic full Euler system is ill-posed in the absence of surface tension,
due to the so-called Kelvin–Helmholtz instabilities. In [31], Lannes shows that the
Kelvin–Helmholtz instabilities appear only above a frequency threshold, so that the
combined regularizing effects of gravity on the low-frequency component of the flow
and (small) surface tension on the high frequency component are sufficient to ensure
the well-posedness on a time interval consistent with observations. A very rough and
simplistic statement of his result is that the flow is stable provided that (using our
notation)

ε4bo is sufficiently small.

As the Green–Naghdi model is derived in the shallow-water regime, it is expected
to predict correctly the low-frequency component which describes the main part of
the flow. On the contrary, we cannot expect that the evolution of the high-frequency
component of the flow is correctly captured by the Green–Naghdi model. It is therefore
interesting to verify whether the Green–Naghdi model is subject to Kelvin–Helmholtz
instabilities, as described above.

As a matter of fact, the calculations below suggest that the Green–Naghdi model
suffers from stronger instabilities than the full Euler model, in the sense that unstable
growing modes appear unless

ε2bo is sufficiently small.
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The phenomenon persists for the simplified model in the Camassa–Holm regime, with
a nonphysical condition on the depth ratio of the two layers, namely, δ > 1.

On the contrary, we show that such growing modes are absent from our model (3.3),
presented in section 3 and constructed in section 4.3, below. This explains why we
are able to show that our model is well-posed even in the absence of surface tension.

Our formal discussion in this section is based on the explicit study of linearized
systems around the solutions of constant shear: (ζ, v) = (0, v), where v is a constant.
When plugging the Ansatz (ζ, v̄) = (0+κζ̃ , v+κṽ) in system (4.6) and keeping only
terms of size O(κ), one obtains the following linear system in (ζ̃ , ṽ):
(4.7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tζ̃ +
1

γ + δ
∂xṽ + ε

δ2 − γ

(γ + δ)2
v∂xζ̃ = 0,

∂t

(
ṽ − 1

3δ
μ

{
1 + γδ

γ + δ
∂2xṽ + ε

γ(1 + δ)2(δ − 1)

(γ + δ)2
v∂2xζ̃

})

+
(
(γ + δ)− ε2 δγ(δ+1)2)

(γ+δ)3 |v|2
)
∂xζ̃ + ε δ2−γ

(γ+δ)2 v∂xṽ

= με
3(γ+δ)∂x

(
v
{

1−γ
γ+δ∂

2
xṽ − εγ(1+δ)2

(γ+δ)2 v∂
2
xζ̃

})
+ μγ+δ

bo ∂
3
xζ̃ .

One obtains (calculations are tedious but straightforward and easily checked with
a computer algebra system, thus we omit them) the following dispersion relation when

solving for plane waves of the form ζ̃(t, x) = ζ̂(k, ω)ei(kx−ωt) and ṽ = v̂(k, ω)ei(kx−ωt):

AGN(k)ω
2 +BGN(k)ω + CGN(k) = 0,

where

AGN(k) =
1

k

(
1 +

1 + γδ

3δ(γ + δ)
μ|k|2

)
, BGN(k) = −2εv

(
δ2 − γ

(γ + δ)2
+

1− γ

3(γ + δ)2
μ|k|2

)
,

CGN(k) = −k
({

1− ε2|v|2 γ + δ3

(γ + δ)3

}
+ μk2

{
bo−1 − ε2|v|2 1

3(γ + δ)2

})
.

Introduce

ΔGN(k) ≡ 1

4
BGN(k)

2 −AGN(k)CGN(k)

=

(
bo−1 1 + γδ

3δ(γ + δ)
− ε2

1

9

γ(δ + 1)2

δ(γ + δ)4
|v|2

)
μ2k4

+

(
1

bo
− δ3 + γ

3δ

γ(δ + 1)2

(γ + δ)5
|v|2

)
μk2

+

(
1− ε2

γδ(δ + 1)2

(γ + δ)4
|v|2

)(
1 +

1

3

1 + γδ

δ(γ + δ)
μk2

)
,

and KGN = 1
3bo

1+γδ
δ(γ+δ) − ε2 1

9
γ(δ+1)2

δ(γ+δ)4 |v|2. One sees that if KGN < 0, then the system

has growing modes at high frequencies, that is, negative imaginary part �(ω(k)) < 0
for |k| large. More precisely, if KGN < 0, one has for k sufficiently large,

�(ω±(k)) = ±
√−ΔGN(k)

AGN(k)
∼

|k|→+∞
±k

√−KGN

1+γδ
3δ(γ+δ)

.

D
ow

nl
oa

de
d 

01
/1

4/
15

 to
 1

29
.2

0.
36

.2
26

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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The rate of growth of the unstable modes, namely, −�(ω±(k)), is arbitrarily large in
that case, and thus one expects the nonlinear system to be strongly ill-posed.

Let us finally note that the criterion KGN < 0 roughly states that ε2bo should be
sufficiently small. It is therefore similar to the criterion on the full Euler system but
is actually more restricting as ε < 1.

Recall now that the present work is limited to the so-called Camassa–Holm regime,
that is, using additional assumption ε = O(

√
μ). It is therefore natural to look at the

system obtained form the Green–Naghdi system (4.6) when withdrawing all terms of
size O(με2). In particular, one can check that the following approximations formally
hold:

Q[h1, h2]v̄ = −ν∂2xv̄ − ε
γ + δ

3

(
(β − α)v̄∂2xζ + (α+ 2β)∂x(ζ∂xv̄)− βζ∂2xv̄

)
+O(ε2),

R[h1, h2]v̄ = α

(
1

2
(∂xv̄)

2 +
1

3
v̄∂2xv̄

)
+O(ε)

with

(4.8) ν =
1 + γδ

3δ(γ + δ)
, α =

1− γ

(γ + δ)2
, and β =

(1 + γδ)(δ2 − γ)

δ(γ + δ)3
.

Plugging the truncated versions of these expansions into system (4.6) yields a
simplified model, with the same order of precision as the original model, that is,
O(μ2), in the Camassa–Holm regime. Following the same method as above for this
system yields the new dispersion relation AGN(k)ω

2+BGN(k)ω+ C̃GN(k) = 0, where
only C̃GN(k) has changed:

C̃GN(k) = −k
({

1− ε2|v|2 γ + δ3

(γ + δ)3

}
− μk2

{
bo−1 − ε2|v|2 (1− γ)(δ2 − γ)

3(γ + δ)4

})
.

The behavior is therefore similar to the above with the new criterion

K̃GN =
1

3bo

1 + γδ

δ(γ + δ)
− ε2

1

9

γ(1− γ)(δ − 1)(δ + 1)2

δ(γ + δ)5
|v|2 < 0.

Thus we see that the strongly unstable modes do not appear if δ < 1, that is, when
the lower layer is thicker then the upper layer.

However, we show in the following that these instabilities never occur in our
model, which is equivalent to the previous one in the sense of consistency and in the
Camassa–Holm regime. Indeed, when linearizing system (3.3) introduced in section 3
around the solution of constant shear, one obtains the following dispersion relation:

A(k)ω2 +B(k)ω + C(k) = 0,

where

A(k) =
1

k

(
1 + νμ|k|2) , B(k) = −2εv

(
δ2 − γ

(γ + δ)2
+

1

2

{
δ2 − γ

(γ + δ)2
+ ς

}
νμ|k|2

)
,

C(k) = −k
(
1− ε2|v|2 γ + δ3

(γ + δ)3
− ε2|v|2 ς(δ

2 − γ)

(γ + δ)2
νμk2

)
.
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Thus

Δ(k) ≡ 1

4
B(k)2 −A(k)C(k)

=
ε2|v|2
4

∣∣∣∣ς − δ2 − γ

(γ + δ)2

∣∣∣∣
2

ν2μ2k4 +

(
1− ε2

γδ(δ + 1)2

(γ + δ)4
|v|2

)
(1 + νμ|k|2).

Recall ν > 0 by assumption (3.2). Thus the system has no growing mode provided
that the following criterion is satisfied:

(4.9) K = 1− ε2
γδ(δ + 1)2

(γ + δ)4
|v|2 ≥ 0.

Notice, however, that the unstable modes when criterion (4.9) is not satisfied behave
much differently from the above unstable modes of Kelvin–Helmholtz type. Indeed,
the growing modes when K < 0 arise at low frequency, and the rate of growth satisfies

∣∣�(ω±(k))
∣∣ ≤

√
max{−Δ(k), 0}

|A(k)| ≤ |k|√
1 + νμ|k|2

√−K.

Thus the rate of growth is uniformly bounded, for all wavenumbers, by
√−Kνμ−1.

This is the reason why the criterion (4.9) does not appear in the results of sec-
tion 3. Indeed, as the energy of the flow is initially bounded, in order to have K < 0,
one needs ε � 1. Since we are restricted to the Camassa–Holm regime, this yields√
μ � ε � 1, and both the linearized study above and our nonlinear results of section 3

predict a control of the energy of the solution up to time T = O(1). Furthermore, we
indicate in Remark 6.1 that one could actually work without the Camassa–Holm as-
sumption, ε = O(

√
μ), by using another energy which, in order to be a convex entropy

of the system, would ask for an additional assumption. This assumption reads

Q0(εζ) + ε2Q1(εζ, εv) > 0,

where the functions Q0 and Q1 are defined in (6.5), and corresponds precisely to (4.9)
when ζ = 0. Notice finally that the above criterion may be seen as a hyperbolicity
condition for the first order (μ = 0) shallow-water system; see [23].

4.3. Our new model. In this section, we manipulate the Green–Naghdi sys-
tem (4.6), systematically withdrawing O(μ2, με2) terms, in order to recover our model
presented in (3.3). The first step is to introduce the following symmetric operator,

T[εζ]V = q1(εζ)V − μν∂x

(
q2(εζ)∂xV

)
,

where qi(εζ) ≡ 1 + κiεζ (i = 1, 2) and ν, κ1, κ2 are constants to be determined, so as
to write

q1(εζ)∂t

(
v̄ + μQ[h1, h2]v̄

)
− q1(εζ)μ

γ + δ

bo
∂3xζ = T[εζ]∂tv̄ + remainder terms.
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More precisely, one can check

T[εζ]∂tv̄ − q1(εζ)∂t

(
v̄ + μQ[h1, h2]v̄

)
+ q1(εζ)μ

γ + δ

bo
∂3xζ

= −μν∂2x∂tv̄ + μν∂2x∂tv̄ + μ
γ + δ

bo
∂3xζ − μενκ2∂x

(
ζ∂x∂tv̄

)
+ μενκ1ζ∂

2
x∂tv̄

+μεq1(εζ)
γ + δ

3
∂t

(
(β − α)v̄∂2xζ + (α+ 2β)∂x(ζ∂xv̄)− βζ∂2xv̄

)
+μεκ1ζ

γ + δ

bo
∂3xζ,

where ν̄, α, β have been defined in (4.8). The first order (O(μ)) terms may be can-
celed with a proper choice of ν, making use of the fact that the second equation of
system (4.6) yields

∂tv̄ = −(γ + δ)∂xζ − ε

2
∂x

(
δ2 − γ

(δ + γ)2
|v̄|2

)
+O(ε2, μ).

Indeed, it follows that

γ + δ

bo
∂3xζ =

−1

bo
∂2x∂tv̄ −

ε

2bo

δ2 − γ

(δ + γ)2
∂3x

(
|v̄|2

)
+O(ε2, μ),

and thus one defines

(4.10) ν = ν − 1

bo
=

1 + γδ

3δ(γ + δ)
− 1

bo
,

and one has

T[εζ]∂tv̄ − q1(εζ)∂t

(
v̄ + μQ[h1, h2]v̄

)
+ q1(εζ)μ

γ + δ

bo
∂3xζ

= −μ ε

2bo

δ2 − γ

(δ + γ)2
∂3x

(
|v̄|2

)
− μενκ2∂x

(
ζ∂x∂tv̄

)
+ μενκ1ζ∂

2
x∂tv̄ + μεκ1ζ

γ + δ

bo
∂3xζ

+ με
γ + δ

3
∂t

(
(β − α)v̄∂2xζ + (α+ 2β)∂x(ζ∂xv̄)− βζ∂2xv̄

)
+O(μ2, με2).

Use again that (4.6) yields ∂tv̄ = −(γ + δ)∂xζ +O(ε, μ) and ∂tζ = −1
γ+δ∂xv̄ +O(ε, μ),

and one obtains

T[εζ]∂tv̄ − q1(εζ)∂t

(
v̄ + μQ[h1, h2]v̄

)
+ q1(εζ)μ

γ + δ

bo
∂3xζ

= με(γ + δ)
(
νκ2∂x

(
ζ∂2xζ

)
− νκ1ζ∂

3
xζ

)
+ μεκ1

γ + δ

bo
ζ∂3xζ

−με
(γ + δ)2

3

(
(β − α)(∂xζ)(∂

2
xζ) + (α + 2β)∂x(ζ∂

2
xζ)− βζ∂3xζ

)
−με

1

3

(
(β − α)v̄∂3xv̄ + (α+ 2β)∂x((∂xv̄)

2)− β(∂xv̄)(∂
2
xv)

)
−με

1

2bo

δ2 − γ

(δ + γ)2
∂3x

(
|v̄|2

)
+O(μ2, με2).

It becomes clear, now, that one can adjust κ1, κ2 ∈ R so that all terms involving ζ
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and its derivatives are withdrawn. More specifically, we set5

(4.11)

(
ν − 1

bo

)
κ1 =

γ + δ

3
(2β − α),

(
ν − 1

bo

)
κ2 = (γ + δ)β,

and one obtains consequently

T[εζ]∂tv̄ − q1(εζ)∂t

(
v̄ + μQ[h1, h2]v̄

)
+ q1(εζ)μ

γ + δ

bo
∂3xζ(4.12)

= με

({−1

bo

δ2 − γ

(δ + γ)2
− 1

3
(β − α)

}
v̄∂3xv̄

+

{ −3

2bo

δ2 − γ

(δ + γ)2
− 1

3
(α+

3

2
β)

}
∂x((∂xv̄)

2)

)
+O(μ2, με2).

However, one of the remaining terms in (4.12), as well as in ∂x(R[h1, h2]v̄),
involves three derivatives on v̄. In order to deal with these terms, we introduce
T[εζ](εςv̄∂xv̄) where, again, ς ∈ R is to be determined. More precisely, one has

T[εζ](εςv̄∂xv̄) + μεq1(εζ)∂x

(
R[h1, h2]v̄

)
= εςq1(εζ)v̄∂xv̄ − μενς∂x

(
q2(εζ)∂x(v̄∂xv̄)

)
+ μεq1(εζ)α∂x

(
1

2
(∂xv̄)

2 +
1

3
v̄∂2xv̄

)
.

This yields

(4.13) T[εζ](εςv̄∂xv̄) + μεq1(εζ)∂x

(
R[h1, h2]v̄

)
= εςq1(εζ)v̄∂xv̄ + με∂x

((α
2
− νς

)
(∂xv̄)

2 +
(α
3
− νς

)
v̄∂2xv̄

)
+O(μ2, με2).

Combining (4.12) with (4.13), one can check that if we set

(4.14)

(
ν − 1

bo

)
ς =

2α− β

3
− 1

bo

δ2 − γ

(δ + γ)2
,

then the following approximation holds (withdrawing O(μ2, με2) terms):

T[εζ](∂tv̄ + εςv̄∂xv̄)− q1(εζ)∂t

(
v̄ + μQ[h1, h2]v̄

)
+μq1(εζ)

(
γ + δ

bo
∂3xζ + ε∂x

(R[h1, h2]v̄
))

= εςq1(εζ)v̄∂xv̄ − με
2α

3
∂x

(
(∂xv̄)

2
)
+O(μ2, με2).

When plugging this estimate in (4.6), and after multiplying the second equation

5Of course, the definition of κ1, κ2 in (4.11) and ς in (4.14) forbids the value bo−1 = ν = 1+γδ
3δ(γ+δ)

.

Thus, in order to be completely rigorous, one should exclude a small neighborhood around this value
as for the set parameters for which Theorem 4.4 (Theorem 3.1) holds true. This restriction is
automatically satisfied in the Camassa–Holm regime used thereafter; see (3.2).

D
ow

nl
oa

de
d 

01
/1

4/
15

 to
 1

29
.2

0.
36

.2
26

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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by q1(εζ), we obtain the following system of equations:

(4.15)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tζ + ∂x

(
h1h2

h1 + γh2
v̄

)
= 0,

T[εζ] (∂tv̄ + εςv̄∂xv̄) + (γ + δ)q1(εζ)∂xζ

+ ε
2q1(εζ)∂x

(
h2
1−γh2

2

(h1+γh2)2
|v̄|2 − ς |v̄|2

)
= −με 23 1−γ

(γ+δ)2 ∂x
(
(∂xv̄)

2
)
,

where we recall that

(4.16) T[εζ]V = q1(εζ)V − μν∂x

(
q2(εζ)∂xV

)
with qi(X) ≡ 1 + κiX (i = 1, 2) and ν, κ1, κ2, ς defined by (4.10), (4.11), and (4.14).

System (4.15) has been introduced in section 3 and is the system studied in the
present work. Below we reproduce and prove Theorem 3.1, which asserts the validity
of (4.15) as an asymptotic model for the full Euler system in the sense of consistency.

Theorem 4.4. For (μ, ε, δ, γ, bo) ≡ p ∈ PSW, let Up ≡ (ζp, ψp) be a family of
solutions of the full Euler system (2.4) such that such that there exists C0, T > 0 with

ess sup
t∈[0,T )

(∣∣ζp∣∣
Hs+9

2
+

∣∣∂tζp∣∣
Hs+ 7

2
+

∣∣∂xψp
∣∣
Hs+11

2
+

∣∣∂t∂xψp
∣∣
Hs+9

2

)
≤ C0

for any s ≥ s0 + 1/2, s0 > 1/2, and uniformly with respect to p ∈ PSW. Moreover,
assume that there exists h01 > 0 such that

h1 ≡ 1− εζp ≥ h01 > 0, h2 ≡ 1

δ
+ εζp ≥ h01 > 0.

Define v̄p as in (4.5) or, equivalently, by

1

μ
Gμ[εζp]ψp = −∂x

(
h1h2

h1 + γh2
v̄p

)
.

Then (ζ, v̄) satisfies (4.15), up to a remainder R, bounded by∥∥R∥∥
L∞([0,T );Hs)

≤ (μ2 + με2) C1

with C1 = C(MSW, h
−1
01 , C0), uniformly with respect to the parameters p ∈ PSW.

Proof. Let U ≡ (ζ, ψ) satisfy the hypotheses of the proposition (withdrawing the
explicit dependence with respect to parameters p for the sake of readability). As a
consequence of Proposition 4.2, we know that (ζ, v̄) satisfies (4.6), up to a remainder
R0, bounded by ∥∥R0

∥∥
L∞([0,T );Hs)

≤ μ2 C1

with C1 = C(MSW, h
−1
01 , C0), uniformly with respect to (μ, ε, δ, γ, bo) ∈ PSW. The

proof now consists in checking that all terms neglected in the above calculations can
be rigorously estimated in the same way.

The formal expansions can easily be checked. When turning to control the re-
mainder terms in Hs norm we make great use of classical product estimates in Hs(R),
s ≥ s0 + 1/2, recalled in Lemma A.1. A technical issue appears when such products
involve terms as 1

h1
, since 1

h1
is controlled in L∞ (thanks to the nonvanishing depth
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condition), but not in Hs (as it does not decay at infinity). We detail in Lemmas A.3
and A.4 how such difficulty can be treated.

For the sake of brevity, we do not develop each estimate but rather provide the
precise bound on the various remainder terms. One has

∣∣∂t(Q[h1, h2]V
)
v̄ + ν∂2x∂tv̄

+ ε
γ + δ

3
∂t

(
(β − α)v̄∂2xζ + (α+ 2β)∂x(ζ∂xv̄)− βζ∂2xv̄

) ∣∣
Hs ≤ ε2C(s+ 3)

with C(s+ 3) ≡ C(MCH, h
−1
01 , |ζ|Hs+3 , |∂tζ|Hs+2 , |v̄|Hs+3 , |∂tv̄|Hs+2) and∣∣∣∣∂x(R[h1, h2]v̄

)− ∂x

[
α

(
1

2
(∂xv̄)

2 +
1

3
v̄∂2xv̄

)]∣∣∣∣
Hs

≤ εC(s+ 3).

Then, since (ζ, v̄) satisfies (4.6), up to the remainder R0, one has

∣∣∂tv̄ + (γ + δ)∂xζ
∣∣
Hs +

∣∣∣∣∂tζ + 1

γ + δ
∂xv̄

∣∣∣∣
Hs

≤ εC(s+ 3) +
∣∣R0

∣∣
Hs .

It follows that (4.13) is valid up to a remainder R1, bounded by∣∣R1

∣∣
Hs ≤ (μ2 + με2)C(s+ 3) + μ(ε + μ)

∣∣R0

∣∣
Hs .

Finally, (ζ, v̄) satisfies (4.6), up to the remainder R0 +R1, and∣∣R0 +R1

∣∣
Hs ≤ μ2C(MCH, h

−1
01 , C0),

where we use that ∣∣v̄∣∣
Hs+3 +

∣∣∂tv̄∣∣Hs+2 ≤ C(MCH, h
−1
01 , C0).

The estimate on v̄ follows directly from the identity ∂x(
h1h2

h1+γh2
v̄) = − 1

μG
μ,εψ = ∂tζ.

The estimate on ∂tv̄ can be proved, for example, following [18, Proposition 2.12]. This
concludes the proof of Theorem 4.4.

5. Preliminary results. In this section, we study the operator T[εζ], defined
in (4.16) and recalled below:

(5.1) T[εζ]V = (1 + εκ1ζ)V − μν∂x ((1 + εκ2ζ)∂xV )

with ν, κ1, κ2 are constants. In our setting, ν, κ1, κ2 depend on the parameters γ, δ, bo;
but in what follows, we use only that the restrictions of the Camassa–Holm regime
ensures that ν > 0 is bounded from below (by hypothesis),

ν ≡ 1 + γδ

3δ(γ + δ)
− 1

bo
≥ ν0 > 0,

and ν + |κ1| + |κ2| is bounded from above, uniformly with respect to any choice of
parameters p ≡ (μ, ε, δ, γ, bo) ∈ PCH (see (3.2)).

When no confusion is possible, we write simply T ≡ T[εζ]. In the following, we
seek sufficient conditions to ensure the strong ellipticity of the operator T which will
yield to the well-posedness and continuity of the inverse T−1.
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As a matter of fact, this condition, namely (H2) (and similarly the classical
nonzero depth condition, (H1)), simply consists in assuming that the deformation
of the interface is not too large. For fixed ζ ∈ L∞, the restriction reduces to an
estimate on εmax

∣∣ζ∣∣
L∞ with εmax = min(M

√
μmax, 1), and (H1)–(H2) hold uniformly

with respect to (μ, ε, δ, γ, bo) ∈ PCH; see Lemma 5.1, below.
Let us briefly detail the argument. Recall the nonzero depth condition

(H1) ∃ h01 > 0, such that min

(
inf
x∈R

h1, inf
x∈R

h2

)
≥ h01 ,

where h1 ≡ 1− εζ and h2 ≡ 1
δ + εζ are the depth of, respectively, the upper and the

lower layer of fluid. It is straightforward to check that, since for all p ∈ PCH, the
condition

εmax

∣∣ζ∣∣
L∞ < min

(
1,

1

δmax

)

is sufficient to define h01 > 0 such that (H1) is valid, independently of p ∈ PCH.
Briefly, since ε ≤ εmax, one has infx∈R h1 ≥ 1− ε

∣∣ζ∣∣
L∞ ≥ 1− εmax

∣∣ζ∣∣
L∞ and similarly

infx∈R h2 ≥ 1
δ − ε

∣∣ζ∣∣
L∞ ≥ 1

δ − εmax

∣∣ζ∣∣
L∞ . Note that conversely, for (H1) to be satisfied

for any p ∈ PCH, one needs

εmax

∣∣ζ∣∣
L∞ ≤ max

(
1,

1

δmin

)
.

Indeed, with ε = εmax, εmaxζ = 1− h1 ≤ 1− h01 and −εmaxζ =
1
δ − h2 ≤ 1

δ − h01.
In the same way, we introduce the condition

(H2) ∃ h02 > 0, s.t. inf
x∈R

(1 + εκ2ζ) ≥ h02 > 0 ; inf
x∈R

(1 + εκ1ζ) ≥ h02 > 0.

As above, such a condition is a consequence of a smallness assumption on ε
∣∣ζ∣∣

L∞ .
Lemma 5.1. Let ζ ∈ L∞ and εmax = min(M

√
μmax, 1) be such that

∃ h0 > 0, such that max(|κ1|, |κ2|, 1, δmax)εmax

∣∣ζ∣∣
L∞ ≤ 1− h0 < 1.

Then there exists h01, h02 > 0 such that (H1)–(H2) hold for any (μ, ε, δ, γ, bo) ∈ PCH.
In what follows, we will always assume that (H1) and (H2) are satisfied. It is a

consequence of our work that such an assumption may be imposed only on the initial
data and then is automatically satisfied over the relevant time scale.

Before asserting the strong ellipticity of the operator T, let us first recall the
quantity | · |H1

μ
, which is defined as

∀v ∈ H1(R), | v |2H1
μ

= | v |2L2 + μ | ∂xv |2L2 ,

and is equivalent to the H1(R)-norm but not uniformly with respect to μ. We define
by H1

μ(R) the space H1(R) endowed with this norm.
Lemma 5.2. Let (μ, ε, δ, γ, bo) ∈ PCH and ζ ∈ L∞(R) such that (H2) is satisfied.

Then the operator

T[εζ] : H1
μ(R) −→ (H1

μ(R))
�
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is uniformly continuous and coercive. More precisely, there exists c0 > 0 such that

(Tu, v) ≤ c0|u|H1
μ
|v|H1

μ
,(5.2)

(Tu, u) ≥ 1

c0
|u|2H1

μ
(5.3)

with c0 = C(MCH, h
−1
02 , ε

∣∣ζ∣∣
L∞).

Moreover, the following estimates hold:
(i) Let s0 > 1

2 and s ≥ 0. If ζ ∈ Hs0(R) ∩ Hs(R) and u ∈ Hs+1(R) and
v ∈ H1(R), then
(5.4)∣∣(ΛsT[εζ]u, v

)∣∣ ≤ C0

(
(1 + ε

∣∣ζ∣∣
Hs0

)
∣∣u∣∣

Hs+1
μ

+
〈
ε
∣∣ζ∣∣

Hs

∣∣u∣∣
H

s0+1
μ

〉
s>s0

) ∣∣v∣∣
H1

μ
.

(ii) Let s0 >
1
2 and s ≥ 0. If ζ ∈ Hs0+1 ∩ Hs(R), u ∈ Hs(R), and v ∈ H1(R),

then
(5.5)∣∣([Λs,T[εζ]

]
u, v

)∣∣ ≤ ε C0

(∣∣ζ∣∣
Hs0+1

∣∣u∣∣
Hs

μ
+

〈∣∣ζ∣∣
Hs

∣∣u∣∣
H

s0+1
μ

〉
s>s0+1

) ∣∣v∣∣
H1

μ
,

where C0 = C(MCH, h
−1
02 ).

Proof. Let us define the bilinear form

a(u, v) =
(
Tu , v

)
=

(
(1 + εκ1ζ)u , v

)
+ νμ

(
(1 + εκ2ζ)∂xu , ∂xv

)
,

where ( · , · ) denotes the L2-based inner product. It is straightforward to check that∣∣a(u, v)∣∣ ≤ sup
x∈R

|1 + εκ1ζ|
(
u , v

)
+ μν sup

x∈R

|1 + εκ2ζ|
(
∂xu , ∂xv

)
,

so that (5.2) is now straightforward, by Cauchy–Schwarz inequality.
The H1

μ(R)-coercivity of a(·, ·), i.e., (5.3), is a consequence of condition (H2):

a(u, u) =
(
Tu , u

)
=

∫
R

(1 + εκ1ζ)|u|2 dx+ νμ

∫
R

(1 + εκ2ζ)|ux|2 dx

≥ h02 min(1, ν0)|u|2H1
μ
.

Let us now prove the higher order estimates of the lemma, starting with the
product estimates. One has(

ΛsTu , v
)
=

(
Λs{(1 + εκ1ζ)u} , v

)
+ νμ

(
Λs{(1 + εκ2ζ)∂xu} , ∂xv

)
.

Estimate (5.4) is now a straightforward consequence of Cauchy–Schwarz inequality
and Lemma A.1.

As for the commutator estimates, one uses(
[Λs,T]u , v

)
= εκ1

(
[Λs, ζ]u , v

)
+ νμεκ2

(
[Λs, ζ]∂xu , ∂xv

)
.

Estimates (5.5) follow, using again Cauchy–Schwarz inequality and Lemma A.2.
The following lemma offers an important invertibility result on T.
Lemma 5.3. Let (μ, ε, δ, γ, bo) ∈ PCH and ζ ∈ L∞(R) such that (H2) is satisfied.

Then the operator

T[εζ] : H2(R) −→ L2(R)

is one-to-one and onto. Moreover, one has the following estimates:
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(i) (T[εζ])−1 : L2 → H1
μ(R) is continuous. More precisely, one has

‖ T−1 ‖L2(R)→H1
μ(R)

≤ c0

with c0 = C(MCH, h
−1
02 , ε

∣∣ζ∣∣
L∞).

(ii) Additionally, if ζ ∈ Hs0+1(R) with s0 >
1
2 , then one has for any 0 < s ≤

s0 + 1,

‖ T−1 ‖Hs(R)→Hs+1
μ (R)≤ cs0+1.

(iii) If ζ ∈ Hs(R) with s ≥ s0 + 1, s0 >
1
2 , then one has

‖ T−1 ‖Hs(R)→Hs+1
μ (R)≤ cs,

where cs̄ = C(MCH, h
−1
02 , ε|ζ|Hs̄), and thus uniform with respect to (μ, ε, δ, γ, bo) ∈

PCH.
Proof. To show the invertibility of T we use the Lax–Milgram theorem. From the

previous lemma, we know that the bilinear form

a(u, v) =
(
Tu , v

)
=

(
(1 + εκ1ζ)u , v

)
+ μν

(
(1 + εκ2ζ)∂xu , ∂xv

)
is continuous and uniformly coercive on H1

μ(R). For any μ > 0, the dual of H1
μ(R) is

H−1(R), of which L2(R) is a subspace, and one has (f, g) ≤ |f |H1
μ
|g|L2 , independently

of μ > 0. Therefore, using the Lax–Milgram lemma, for all f ∈ L2(R), there exists a
unique u ∈ H1

μ(R) such that, for all v ∈ H1
μ(R)

a(u, v) = (f, v);

equivalently, there is a unique variational solution to the equation

(5.6) Tu = f.

We then get from the definition of T that

(5.7) νμ (1 + εκ2ζ) ∂
2
xu = (1 + εκ1ζ)u − μενκ2(∂xζ)(∂xu)− f.

Now, using condition (H2), and since u ∈ H1(R), ζ ∈ L∞(R), and f ∈ L2(R), we
deduce that ∂2xu ∈ L2(R), and thus u ∈ H2(R). We proved T[εζ] : H2(R) −→ L2(R)
is one-to-one and onto.

Let us now turn to the proof of estimates in (i)–(iii).
We start from the equality a(u, u) = (f, u). Using elliptic inequality (5.3) and

Cauchy–Schwarz inequality, one has

1

c0
|u|2H1

μ
≤ a(u, u) =

(
f , u

) ≤ ∣∣f ∣∣
L2

∣∣u∣∣
L2 ≤ ∣∣f ∣∣

L2

∣∣u∣∣
H1

μ
.

Dividing by c−1
0

∣∣u∣∣
H1

μ
yields the estimate in (i).

Let us now assume that f ∈ Hs(R) for s ≥ 0. We apply Λs to (5.6), and we write
it under the form

T(Λsu) = Λsf − [Λs,T]u.
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Proceeding as above, we use the L2 inner product with Λsu and deduce

1

c0
|Λsu|2H1

μ
≤ a(Λsu,Λsu) =

(
TΛsu,Λsu

)
=

(
Λsf − [Λs,T]u , Λsu

)
≤ ∣∣Λsf

∣∣
L2

∣∣Λsu
∣∣
L2 +

∣∣([Λs,T]u , Λsu
)∣∣ .(5.8)

The result is now a consequence of (5.5).
• If 0 ≤ s ≤ s0 + 1, one has

1

c0
|u|2

Hs+1
μ

≤ ∣∣f ∣∣
Hs

∣∣u∣∣
Hs + ε C0

∣∣ζ∣∣
Hs0+1

∣∣u∣∣
Hs

μ

∣∣u∣∣
Hs+1

μ
,

and thus

|u|Hs+1
μ

≤ c0

( ∣∣f ∣∣
Hs + ε C0

∣∣ζ∣∣
Hs0+1

∣∣u∣∣
Hs

μ

)
.

The estimate of (ii) for 0 < s ≤ 1 follows, using estimate (i) and |Λs−1u|H1
μ
≤ |u|H1

μ
.

The result for greater values of s, 1 < s ≤ s0 + 1, follows by continuous induction.
• If s > s0 + 1, then plugging (5.5) into (5.8) yields

1

c0
|u|2

Hs+1
μ

≤ ∣∣f ∣∣
Hs

∣∣u∣∣
Hs + ε C0

(∣∣ζ∣∣
Hs0+1

∣∣u∣∣
Hs

μ
+

∣∣ζ∣∣
Hs

∣∣u∣∣
H

s0+1
μ

)∣∣u∣∣
Hs+1

μ
,

and thus

|u|Hs+1
μ

≤ c0

( ∣∣f ∣∣
Hs + ε C0

(∣∣ζ∣∣
Hs0+1

∣∣u∣∣
Hs

μ
+

∣∣ζ∣∣
Hs

∣∣u∣∣
H

s0+1
μ

))
.

As above, the result follows by continuous induction on s.
Finally, let us introduce the following technical estimate, which is used several

times in the subsequent sections.
Corollary 5.4. Let (μ, ε, δ, γ, bo) ∈ PCH and ζ ∈ Hs(R) with s ≥ s0+1, s0 >

1
2 ,

such that (H2) is satisfied. Assume, moreover, that u ∈ Hs−1(R) and that v ∈ H1(R).
Then one has∣∣( [

Λs,T−1[εζ]
]
u , T[εζ]v

)∣∣ = ∣∣( [
Λs,T[εζ]

]
T−1[εζ]u , v

)∣∣
≤ ε C(MCH, h

−1
02 ,

∣∣ζ∣∣
Hs)

∣∣u∣∣
Hs−1

∣∣v∣∣
H1

μ
.(5.9)

Proof. The first identity can be obtained through simple calculation: using that
T[εζ] is symmetric,([

Λs,T−1[εζ]
]
u,T[εζ]v

)
=

(
T[εζ]

[
Λs,T−1[εζ]

]
u, v

)
=

(
T[εζ]ΛsT−1[εζ]u − Λsu , v

)
=

(− [
Λs,T[εζ]

]
T−1[εζ]u , v

)
.

The estimate is now a direct application of (5.5) and Lemma 5.3. From point (ii)
and (iii) of Lemma 5.3, one has∣∣T−1[εζ]u

∣∣
Hs

μ
≤ C

∣∣u∣∣
Hs−1

with C = C(MCH, h
−1
02 , ε

∣∣ζ∣∣
Hs−1 , ε

∣∣ζ∣∣
Hs0+1). Now apply commutator estimate (5.5),

and one obtains straightforwardly our desired estimate.
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6. Linear analysis. Let us recall the system (4.15) introduced in section 4.3.

(6.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tζ + ∂x

(
h1h2

h1 + γh2
v̄

)
= 0,

T[εζ] (∂tv̄ + εςv̄∂xv̄) + (γ + δ)q1(εζ)∂xζ

+ ε
2q1(εζ)∂x

(
h2
1−γh2

2

(h1+γh2)2
|v̄|2 − ς |v̄|2

)
= −με 23 1−γ

(γ+δ)2 ∂x
(
(∂xv̄)

2
)

with h1 = 1 − εζ , h2 = 1/δ + εζ qi(X) = 1 + κiX(i = 1, 2), κi, ς defined in(4.11),
(4.14), and

T[εζ]V = q1(εζ)V − μν∂x (q2(εζ)∂xV ) .

In order to ease the reading, we define the function

f : X → (1−X)(δ−1 +X)

1−X + γ(δ−1 +X)
.

One can easily check that

f(εζ) =
h1h2

h1 + γh2
and f ′(εζ) =

h21 − γh22
(h1 + γh2)2

.

Additionally, let us denote

κ =
2

3

1− γ

(γ + δ)2
and q3(εζ) =

1

2

(
h21 − γh22

(h1 + γh2)2
− ς

)
,

so that one can rewrite (here and in the following, we omit the bar on v for the sake
of readability)

(6.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tζ + f(εζ)∂xv + ε∂xζf
′(εζ)v = 0,

T
(
∂tv +

ε

2
ς∂x(v

2)
)
+ (γ + δ)q1(εζ)∂xζ + εq1(εζ)∂x(q3(εζ)v

2)

= −μεκ∂x
(
(∂xv)

2
)
.

The equations can be written after applying T−1 to the second equation in (6.2)
as

(6.3) ∂tU +A0[U ]∂xU +A1[U ]∂xU = 0

with
(6.4)

A0[U ] =

(
εf ′(εζ)v f(εζ)

T−1(Q0(εζ)·) εT−1(Q[εζ, v]·)
)
, A1[U ] =

(
0 0

ε2T−1(Q1(εζ, v)·) εςv

)
,

where Q0(εζ), Q1(εζ, v) are defined as

(6.5) Q0(εζ) = (γ + δ)q1(εζ), Q1(εζ, v) = q1(εζ)q
′
3(εζ)v

2

and the operator Q[εζ, v] is defined by

(6.6) Q[εζ, v]f ≡ 2q1(εζ)q3(εζ)vf + μκ∂x(f∂xv).
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Following the classical theory of hyperbolic systems, the well-posedness of the
initial value problem of the above system will rely on a precise study of the properties,
and in particular energy estimates, for the linearized system around some reference
state U = (ζ, v)�:

(6.7)

{
∂tU +A0[U ]∂xU +A1[U ]∂xU = 0,
U|t=0

= U0.

In the following subsection, we construct the natural energy space for our problem.
Energy estimates are then proved in section 6.2. Finally, we state the well-posedness
of the linear system (6.7) in section 6.3.

6.1. Energy space. Let us first remark that by construction, one has a pseu-
dosymmetrizer of the system, given by

(6.8) S[U ] =

(
Q0(εζ)

f(εζ) 0

0 T[εζ]

)
, S[U ]A0[U ] =

(
ε
Q0(εζ)

f(εζ) f
′(εζ)v Q0(εζ)

Q0(εζ) εQ[εζ, v]

)
.

Notice that S[U ] is symmetric, as T[εζ] is symmetric, and one can easily check
that S[U ]A0[U ] is symmetric as well. On the contrary, the operator

S[U ]A1[U ] =

(
0 0

ε2Q1(εζ, v) εςT[εζ](v·)
)

represents the defect of symmetry.
However, T[εζ](v·) has the desired following property:(
T[εζ](v∂xV ), V

)
=

(
q1(εζ)v∂xV − μν∂x(q2(εζ)∂x(v∂xV )) , V

)
(6.9)

= −1

2

(
∂x(q1(εζ)v)V , V

)
+ μν

(
q2(εζ)∂x(v∂xV ) , ∂xV

)
= −1

2

(
∂x(q1(εζ)v)V, V

)
+ μν

(
q2(εζ)(∂xv)∂xV, ∂xV

)
− μν

1

2

(
∂x(q2(εζ)v)∂xV, ∂xV

)
.

Therefore, the inner product (T[εζ](v∂xV ), V ) is controlled by |V |2H1
μ
, bounded in our

energy space, as defined below. In the same way, one can control the contribution of
ε2Q1(εζ, v), using the smallness of ε through the assumption of the Camassa–Holm
regime ε = O(

√
μ).

Remark 6.1. In the analysis below, the only place where the smallness assumption
of the Camassa–Holm regime, ε = O(

√
μ), is used (apart from the simplifications it

offers when constructing system (6.1)), stands in the estimation of the contribution of
ε2Q1(εζ, v). As a matter of fact, this assumption is actually not required: one could

replace Q0(εζ) by Q0(εζ)+ ε
2Q1(εζ, v) in the pseudosymmetrizer S[U ], thus canceling

out the ε2Q1(εζ, v) term. Note, however, that the energy would then be slightly
different than the one defined below, and that for Lemma 6.3 to hold, one needs
an additional smallness assumption on εv, in order to ensure Q0(εζ) + ε2Q1(εζ, v) ≥
h03 > 0.

Let us now define our energy space.
Definition 6.2. For given s ≥ 0 and μ, T > 0, we denote by Xs the vector space

Hs(R)×Hs+1(R) endowed with the norm

∀ U = (ζ, v) ∈ Xs, |U |2Xs ≡ |ζ|2Hs + |v|2Hs + μ|∂xv|2Hs ,
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while Xs
T stands for the space of U = (ζ, v) such that U ∈ C0([0, Tε ];X

s) and ∂tζ ∈
L∞([0, Tε ]× R), endowed with the canonical norm

‖U‖Xs
T
≡ sup

t∈[0,T/ε]

|U(t, ·)|Xs + ess sup
t∈[0,T/ε],x∈R

|∂tζ(t, x)|.

A natural energy for the initial value problem (6.7) is given by

(6.10) Es(U)2 = (ΛsU, S[U ]ΛsU) =

(
Λsζ,

Q0(εζ)

f(εζ)
Λsζ

)
+

(
Λsv,T[εζ]Λsv

)
.

The link between Es(U) and the Xs-norm is investigated in the following lemma.
Lemma 6.3. Let p = (μ, ε, δ, γ, bo) ∈ PCH, s ≥ 0 and ζ ∈ L∞(R), satisfying (H1)

and (H2). Then Es(U) is equivalent to the | · |Xs-norm uniformly with respect to
p ∈ PCH. More precisely, there exists c0 = C(MCH, h

−1
01 , h

−1
02 ) > 0 such that

1

c0
Es(U) ≤ ∣∣U ∣∣

Xs ≤ c0E
s(U).

Proof. This is a straightforward application of Lemma 5.2 and that one has for
Q0(εζ), f(εζ) > 0,

inf
x∈R

Q0(εζ)

f(εζ)
≥

(
inf
x∈R

Q0(εζ)

)(
sup
x∈R

f(εζ)

)−1

,

sup
x∈R

∣∣∣∣Q0(εζ)

f(εζ)

∣∣∣∣ ≤
(
sup
x∈R

Q0(εζ)

)(
inf
x∈R

f(εζ)

)−1

,

where we recall that if (H1) is satisfied, then h1 = 1− εζ and h2 = 1
δ + εζ satisfy

inf
x∈R

h1 ≥ h01, sup
x∈R

∣∣h1∣∣ ≤ 1 + 1/δ, inf
x∈R

h2 ≥ h01, sup
x∈R

∣∣h2∣∣ ≤ 1 + 1/δ.

We conclude this section by proving some general estimates concerning our new
operators, which will be useful in the following subsection.

Lemma 6.4. Let (μ, ε, δ, γ, bo) = p ∈ PCH, and let U = (ζu, u)
� such that

ζu ∈ L∞ satisfies (H1), (H2). Then for any V,W ∈ X0, one has

(6.11)
∣∣∣ ( S[U ]V , W

) ∣∣∣ ≤ C
∣∣V ∣∣

X0

∣∣W ∣∣
X0

with C = C(MCH, h
−1
01 , h

−1
02 , ε

∣∣ζu∣∣L∞) .

Moreover, if ζu ∈ Hs, V ∈ Xs−1 with s ≥ s0 + 1, s0 > 1/2, then one has∣∣∣( [
Λs, S[U ]

]
V , W

)∣∣∣ ≤ C
∣∣V ∣∣

Xs−1

∣∣W ∣∣
X0(6.12) ∣∣∣( [

Λs, S−1[U ]
]
V , S[U ]W

)∣∣∣ ≤ C
∣∣V ∣∣

Hs−1×Hs−1

∣∣W ∣∣
X0(6.13)

with C = C(MCH, h
−1
01 , h

−1
02 , ε

∣∣ζu∣∣Hs) .

Proof. Let U = (ζu, u)
� ∈ Xs, V = (ζv, v)

� ∈ Xs, W = (ζw , w)
� ∈ X0. Then by

definition of S[·] in (6.8), one has

(
S[U ]V , W

)
=

(
Q0(εζu)

f(εζu)
ζv , ζw

)
+

(
T[εζu]v , w

)
.
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The first term is straightforwardly estimated by Cauchy–Schwarz inequality,∣∣∣∣
(
Q0(εζu)

f(εζu)
ζv , ζw

)∣∣∣∣ ≤
∣∣∣∣Q0(εζu)

f(εζu)

∣∣∣∣
L∞

∣∣ζv∣∣L2

∣∣ζw∣∣L2 ,

and Q0(εζu)
f(εζu)

is uniformly bounded since ζu satisfies (H1).

The second term is estimated by Lemma 5.2, (5.2):∣∣∣( T[εζu]v , w
)∣∣∣ ≤ c0|v|H1

μ
|w|H1

μ
≤ c0|V |X0 |W |X0 .

Estimate (6.11) is proved.
Now, let us decompose

( [
Λs, S[U ]

]
V , W

)
=

( [
Λs,

Q0(εζu)

f(εζu)

]
ζv , ζw

)
+

( [
Λs,T[εζu]

]
v , w

)
.

By Cauchy–Schwarz inequality and Lemma A.2, one has∣∣∣∣
( [

Λs,
Q0(εζu)

f(εζu)

]
ζv , ζw

)∣∣∣∣ ≤
∣∣∣∣
[
Λs,

Q0(εζu)

f(εζu)

]
ζv

∣∣∣∣
L2

∣∣ζw∣∣L2

≤
∣∣∣∣∂x

{
Q0(εζu)

f(εζu)

}∣∣∣∣
Hs−1

∣∣ζv∣∣Hs−1

∣∣ζw∣∣L2

≤ C(ε
∣∣ζu∣∣Hs)

∣∣ζv∣∣Hs−1

∣∣ζw∣∣L2 ,

where we used Lemma A.1 and continuous Sobolev embedding for the last inequality.
The second term is estimated using Lemma 5.2, (5.5):∣∣∣( [

Λs,T[εζu]
]
v , w

)∣∣∣ ≤ C(ε|ζu|Hs)|V |Xs−1 |W |X0 .

Estimate (6.12) is proved.
Finally, one has

( [
Λs, S−1[U ]

]
V , S[U ]W

)
≤

( [
Λs,

f(εζu)

Q0(εζu)

]
ζv ,

Q0(εζu)

f(εζu)
ζw

)

+
( [

Λs,T−1[εζu]
]
v , T[εζu]w

)
.

The first term is estimated exactly as above, noticing that both f(εζu) and Q0(εζu)
are bounded from above and below since (H1) and (H2) are satisfied.

The second term is estimated using Corollary 5.4, (5.9). Estimate (6.13) follows,
and the lemma is proved.

6.2. Energy estimates. Our aim is to establish a priori energy estimates con-
cerning our linear system. In order to be able to use the linear analysis on both
the well-posedness and stability of the nonlinear system, we consider the following
modified system:

(6.14)

{
∂tU +A0[U ]∂xU +A1[U ]∂xU = F,

U|t=0
= U0,

where we added a right-hand-side F , whose properties will be precised in the following
lemmas.
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We begin by asserting a basic X0 energy estimate, which we extend to Xs space
(s > 3/2) later on.

Lemma 6.5 (X0 energy estimate). Set (μ, ε, δ, γ, bo) ∈ PCH. Let T > 0 and
U ∈ L∞([0, T/ε];X0) and U, ∂xU ∈ L∞([0, T/ε]×R) such that ∂tζ ∈ L∞([0, T/ε]×R)
and ζ satisfies (H1), (H2), and U,U satisfy system (6.14) with a right hand side, F ,
such that (

F, S[U ]U
) ≤ CF ε

∣∣U ∣∣2
X0 + f(t)

∣∣U ∣∣
X0

with CF a constant and f a positive integrable function on [0, T/ε]. Then there exists
λ ≡ C(‖∂tζ‖L∞([0,T/ε]×R), ‖U‖L∞([0,T/ε]×R), ‖∂xU‖L∞([0,T/ε]×R), CF ) such that

(6.15) ∀ 0 ≤ t ≤ T

ε
, E0(U)(t) ≤ eελtE0(U0) +

∫ t

0

eελ(t−t′)f(t′)dt′.

The constant λ is independent of (μ, ε, δ, γ, bo) ∈ PCH but depends on MCH, h
−1
01 , h

−1
02 .

Proof. Let us take the inner product of (6.14) by S[U ]U :(
∂tU, S[U ]U

)
+

(
A0[U ]∂xU, S[U ]U

)
+

(
A1[U ]∂xU, S[U ]U

)
=

(
F, S[U ]U

)
.

From the symmetry property of S[U ], and using the definition of Es(U), one deduces

1

2

d

dt

(
E0(U)2

)
=

1

2

(
U,

[
∂t, S[U ]

]
U
)− (

S[U ]A0[U ]∂xU,U
)

(6.16)

− (
S[U ]A1[U ]∂xU,U

)
+

(
F, S[U ]U

)
.

Let us first estimate
(
S[U ]A0[U ]∂xU,U

)
. Let us recall that

S[U ]A0[U ] =

(
ε
Q0(εζ)

f(εζ) f
′(εζ)v Q0(εζ)

Q0(εζ) εQ[εζ, v]

)

so that

(
S[U ]A0[U ]∂xU,U

)
= −1

2

(
ζ, ε∂x

(
Q0(εζ)

f(εζ)
f ′(εζ)v

)
ζ

)
−

(
ζ, ∂x(Q0(εζ))v

)
+ ε

(
Q[εζ, v]∂xv, v

)
≡ A1 +A2 +A3.

The estimates concerning A1 and A2 are straightforward. Using Cauchy–Schwarz
inequality, there exists C = C(‖U‖L∞ + ‖∂xU‖L∞) such that

|A1|+ |A2| ≤ εC
(∣∣ζ∣∣2

L2 +
∣∣v∣∣2

L2

)
≤ εC

∣∣U ∣∣2
X0 .

As for A3, one has (recalling the definition of Q in (6.6))(
Q[εζ, v]∂xv, v

)
= −(

∂x(q1(εζ)q3(εζ)v)v, v
)− μκ

(
(∂xv)(∂xv), ∂xv

)
.

Those two terms are controlled, again thanks to Cauchy–Schwarz inequality, so that∣∣(Q[εζ, v]∂xv, v
)∣∣ ≤ C

(∥∥U∥∥
L∞ +

∥∥∂xU∥∥
L∞

) ∣∣v∣∣2
H1

μ
≤ C

(∥∥U∥∥
L∞ +

∥∥∂xU∥∥
L∞

) ∣∣U ∣∣2
X0 .

D
ow

nl
oa

de
d 

01
/1

4/
15

 to
 1

29
.2

0.
36

.2
26

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A NEW MODEL FOR THE PROPAGATION OF INTERNAL WAVES 269

Altogether, we proved

(6.17)
∣∣(S[U ]A0[U ]∂xU,U

)∣∣ ≤ εC
(∥∥U∥∥

L∞ +
∥∥∂xU∥∥

L∞
) ∣∣U ∣∣2

X0 .

Let us now estimate (S[U ]A1[U ]∂xU,U). One has(
S[U ]A1[U ]∂xU,U

)
=

(
ε2Q1(εζ, v)∂xζ, v

)
+ ες

(
T[εζ](v∂xv), v)

≡ A4 +A5.

In order to control the term A4, we write(
ε2Q1(εζ, v)∂xζ, v

)
= ε2

(
q1(εζ)q

′
3(εζ)v

2∂xζ, v
)

= −ε2(∂x(q1(εζ)q′3(εζ)v2v), ζ)
= −ε2(∂x(q1(εζ)q′3(εζ)v2)v, ζ)− ε2

(
q1(εζ)q

′
3(εζ)v

2∂xv, ζ
)
.

Since p ∈ PCH, as defined in (3.2), one has ε ≤M
√
μ, and therefore

|A4| ≤ εC
(∥∥U∥∥

L∞ +
∥∥∂xU∥∥

L∞
) ∣∣U ∣∣2

X0

(where we used, once again, Cauchy–Schwarz inequality).
In order to control A5, one makes use of the identity given in (6.9), applied to

V = v, and deduces easily

|A5| ≤ εC
(∥∥U∥∥

L∞ +
∥∥∂xU∥∥

L∞
)
E0(U)2.

Altogether, one has

(6.18)
∣∣(S[U ]A1[U ]∂xU,U

)∣∣ ≤ εC
(∥∥U∥∥

L∞ +
∥∥∂xU∥∥

L∞
) ∣∣U ∣∣2

X0 .

The last term to estimate is (U, [∂t, S[U ]]U). One has

(
U,

[
∂t, S[U ]

]
U
) ≡ (

v,
[
∂t,T

]
v
)
+

(
ζ,

[
∂t,

Q0(εζ)

f(εζ)

]
ζ

)

=
(
v,

(
∂tq1(εζ)

)
v
)
− μν

(
v, ∂x

(
(∂tq2(εζ))(∂xv)

))
+

(
ζ, ∂t

(
Q0(εζ)

f(εζ)

)
ζ

)

= εκ1

(
v, (∂tζ)v

)
+ μνεκ2

(
∂xv, (∂tζ)∂xv)

)
+ ε

(
ζ,
Q′

0(εζ)f(εζ)−Q0(εζ)f
′(εζ)

f(εζ)2
(∂tζ)ζ

)
.

From Cauchy–Schwarz inequality and since ζ satisfies (H1), one deduces

(6.19)

∣∣∣∣ 1

2

(
U,

[
∂t, S[U ]

]
U
) ∣∣∣∣ ≤ εC

(∥∥∂tζ∥∥L∞([0,T/ε]×R)
,
∥∥ζ∥∥

L∞([0,T/ε]×R)

) ∣∣U ∣∣2
X0 .

One can now conclude with the proof of the energy estimate. Plug (6.17), (6.18),
and (6.19) into (6.16), invoke Lemma 6.3, and make use of the assumption of the
lemma on F . This yields

1

2

d

dt

(
E0(U)2

) ≤ ε C0E
0(U)2 + f(t)E0(U),
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where C0 ≡ C(‖∂tζ‖L∞([0,T/ε]×R), ‖U‖L∞([0,T/ε]×R), ‖∂xU‖L∞([0,T/ε]×R), CF ). Conse-
quently,

d

dt
E0(U) ≤ C0εE

0(U) + f(t).

Making use of the usual trick, we compute for any λ ∈ R,

eελt∂t(e
−ελtE0(U)) = −ελE0(U) +

d

dt
E0(U).

Thanks to the above inequality, one can choose λ = C0, so that for all t ∈ [0, Tε ], one
deduces

d

dt
(e−ελtE0(U)) ≤ f(t)e−ελt.

Integrating this differential inequality yields

(6.20) ∀ 0 ≤ t ≤ T

ε
, E0(U)(t) ≤ eελtE0(U0) +

∫ t

0

eελ(t−t′)f(t′)dt′.

This proves the energy estimate (6.15).
Let us now turn to the a priori energy estimate in “large” Xs norm.
Lemma 6.6 (Xs energy estimate). Set (μ, ε, δ, γ, bo) ∈ PCH, and s ≥ s0 + 1,

s0 > 1/2. Let U = (ζ, v)� and U = (ζ, v)� be such that U,U ∈ L∞([0, T/ε];Xs),
∂tζ ∈ L∞([0, T/ε]×R) and ζ satisfies (H1), (H2) uniformly on [0, T/ε], and such that
system (6.14) holds with a right hand side, F , with(

ΛsF, S[U ]ΛsU
) ≤ CF ε

∣∣U ∣∣2
Xs + f(t)

∣∣U ∣∣
Xs ,

where CF is a constant and f is an integrable function on [0, T/ε].
Then there exists λ = C(‖U‖Xs

T
+ CF ) such that the following energy estimate

holds:

(6.21) Es(U)(t) ≤ eελtEs(U0) +

∫ t

0

eελ(t−t′)f(t′)dt′.

The constant λ is independent of (μ, ε, δ, γ, bo) ∈ PCH but depends on MCH, h
−1
01 , h

−1
02 .

Remark 6.7. In this lemma, and in the proof below, the norm ‖U‖Xs
T
is to be

understood as essential sup:

‖U‖Xs
T
≡ ess sup

t∈[0,T/ε]

|U(t, ·)|Xs + ess sup
t∈[0,T/ε],x∈R

|∂tζ(t, x)|.

Proof. Let us multiply the system (6.14) on the right by ΛsS[U ]ΛsU , and integrate
by parts. One obtains

(6.22)
(
Λs∂tU, S[U ]Λ

sU
)
+

(
ΛsA0[U ]∂xU, S[U ]Λ

sU
)

+
(
ΛsA1[U ]∂xU, S[U ]Λ

sU
)
=

(
ΛsF, S[U ]ΛsU

)
,

from which we deduce, using the symmetry property of S[U ], as well as the definition
of Es(U),

1

2

d

dt

(
Es(U)

)2
=

1

2

(
ΛsU,

[
∂t, S[U ]

]
ΛsU

)− (
S[U ]A0[U ]∂xΛ

sU,ΛsU
)

(6.23)

− (
S[U ]A1[U ]∂xΛ

sU,ΛsU
)

− ([
Λs, A0[U ] +A1[U ]

]
∂xU, S[U ]Λ

sU
)

+
(
ΛsF, S[U ]ΛsU

)
.
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We now estimate each of the different components of the right-hand side of the above
identity.

• Estimate of (S[U ]A0[U ]∂xΛ
sU,ΛsU) and (S[U ]A1[U ]∂xΛ

sU,ΛsU). One can
use the L2 estimate derived in (6.17), applied to ΛsU . One deduces

(6.24)
∣∣(S[U ]A0[U ]∂xΛ

sU,ΛsU
)∣∣ ≤ εC

(∥∥U∥∥
L∞ +

∥∥∂xU∥∥
L∞

) ∣∣U ∣∣2
Xs .

Now, thanks to Sobolev embedding, one has for s > s0 + 1, s0 > 1/2

C
(∥∥U∥∥

L∞ +
∥∥∂xU∥∥

L∞
) ≤ C

(∥∥U∥∥
Xs

T

)
,

so that

(6.25)
∣∣(S[U ]A0[U ]∂xΛ

sU,ΛsU
)∣∣ ≤ εC

(∥∥U∥∥
Xs

T

) ∣∣U ∣∣2
Xs .

Similarly, using (6.18), applied to ΛsU and continuous Sobolev embedding,
one has

(6.26)
∣∣(S[U ]A1[U ]∂xΛ

sU,ΛsU
)∣∣ ≤ εC

(∥∥U∥∥
Xs

T

) ∣∣U ∣∣2
Xs .

• Estimate of ([Λs, A[U ]]∂xU, S[U ]]Λ
sU), where A[U ] = A0[U ] + A1[U ]. Using

the definition of A[·] and S[·] in (6.4), (6.8), one has([
Λs, A[U ]

]
∂xU, S[U ]Λ

sU
)

=

(
[Λs, εf ′(εζ)v]∂xζ + [Λs, f(εζ)]∂xv ,

Q(εζ, v)

f(εζ)
Λsζ

)

+
(
[Λs,T−1

(
Q(εζ, v)∂xζ

)
, TΛsv

)
+ ε

(
[Λs,T−1Q[εζ, v] + ςv]∂xv,TΛ

sv
)

≡ B1 +B2 +B3.

Here and in the following, we denote T ≡ T[εζ] and Q(εζ, v) = Q0(εζ) +

ε2Q1(εζ, v). Let us treat each of these terms separately.

– Control of B1 = ([Λs, εf ′(εζ)v]∂xζ + [Λs, f(εζ)]∂xv ,
Q(εζ,v)

f(εζ) Λsζ).

From Cauchy–Schwarz inequality, one has

|B1| ≤
∣∣∣[Λs, εf ′(εζ)v]∂xζ + [Λs, f(εζ)]∂xv

∣∣∣
L2

∣∣∣∣Q(εζ, v)

f(ζ)
Λsζ

∣∣∣∣
L2

.

Since s ≥ s0 + 1, we can use the commutator estimate Lemma A.2 to
get ∣∣∣[Λs, εf ′(εζ)v]∂xζ + [Λs, f(εζ)]∂xv

∣∣∣
L2

�
(|∂x(εf ′(εζ))|Hs−1 + |∂x(f(εζ))|Hs−1

) |∂xU |Hs−1

� εC
(∥∥U∥∥

Xs
T

) ∣∣U ∣∣
Xs ,

where we used, for the last inequality,

∂x(f(εζ)) = ε(∂xζ)f
′(εζ).

It follows, using that
Q(εζ,v)

f(ζ) ∈ L∞ since ζ satisfies (H1),

|B1| ≤ εC
(∥∥U∥∥

Xs
T

) ∣∣U ∣∣2
Xs .
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– Control of B2 = ([Λs,T−1(Q(εζ, v)·)]∂xζ , TΛsv).
By symmetry of T, one has

B2 =
(
T[Λs,T−1(Q(εζ, v)·)]∂xζ , Λsv

)
.

Now, one can check that, by definition of the commutator,

T[Λs,T−1(Q(εζ, v)·)]∂xζ
= TΛsT−1Q(εζ, v)∂xζ −Q(εζ, v)Λs∂xζ

= TΛsT−1Q(εζ, v)∂xζ − ΛsTT−1(Q(εζ, v)∂xζ)

+Λs(Q(εζ, v)∂xζ)−Q(εζ, v)Λs∂xζ

= −[
Λs,T

]
T−1(Q(εζ, v)∂xζ) +

[
Λs, Q(εζ, v)

]
∂xζ.

We can now use Corollary 5.4 and deduce∣∣([Λs,T]T−1(Q(εζ, v)∂xζ) , Λ
sv

)∣∣ ≤ εC
(∣∣ζ∣∣

Hs

) ∣∣Q(εζ, v)∂xζ
∣∣
Hs−1

∣∣v∣∣
Hs+1

μ

≤ εC
(∣∣U ∣∣

Xs

) ∣∣ζ∣∣
Hs

∣∣v∣∣
Hs+1

μ
.

The last inequality is obtained using Lemma A.1.
From Lemma A.2 and the explicit definition of Q = Q0 + ε2Q1 in (6.5),
one has∣∣ [Λs, Q(εζ, v)

]
∂xζ

∣∣
L2 = ε

∣∣[Λs, (γ + δ)κ1ζ + εq1(εζ)q
′
3(εζ)v

2]∂xζ
∣∣
L2

≤ εC
(∣∣U ∣∣

Hs

) ∣∣∂xζ∣∣Hs−1 ,

so that we finally get

|B2| ≤ εC
(∥∥U∥∥

Xs
T

) ∣∣U ∣∣2
Xs .

– Control of B3 = ε([Λs,T−1Q[εζ, v] + ςv]∂xv,TΛ
sv).

Let us first use the definition of Q[εζ, v] (6.5) to expand

B3 = ε
(
[Λs,T−1(q1(εζ)q3(εζ)v·)]∂xv,TΛsv

)
+μεκ

(
[Λs,T−1∂x((∂xv) ·)]∂xv,TΛsv

)
+ ες

(
[Λs, v]∂xv,TΛ

sv
)

≡ B31 +B32 +B33.

In order to estimate B31 and B32, one proceeds as for the control of B2.
One can check

T[Λs,T−1(q1(εζ)q3(εζ)v·)]∂xv = −[Λs,T]T−1(q1(εζ)q3(εζ)v∂xv)

+ [Λs, q1(εζ)q3(εζ)v]∂xv.

As above, using Cauchy–Schwarz inequality, Corollary 5.4, and Lem-
ma A.2, one obtains

|B31| ≤ εC
(∥∥U∥∥

Xs
T

) ∣∣U ∣∣2
Xs .
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In the same way,

T[Λs,T−1(∂x((∂xv) ·)]∂xv = −[Λs,T]T−1(∂x((∂xv)(∂xv))]

+ ∂x
(
[Λs, ∂xv]∂xv

)
.

Again, using Cauchy–Schwarz inequality, Corollary 5.4, and Lemma A.2,
one has

μ
∣∣∣([Λs,T]T−1(∂x((∂xv)(∂xv))],Λ

sv
)∣∣∣

≤ csμ
∣∣ζ∣∣

Hs

∣∣∂x((∂xv)(∂xv))∣∣Hs−1

∣∣v∣∣
Hs+1

μ

≤ cs
∣∣ζ∣∣

Hs

∣∣v∣∣
Hs+1

μ

∣∣v∣∣2
Hs+1

μ

and

μ
∣∣∣(∂x([Λs, ∂xv]∂xv

)
,Λsv

)∣∣∣ = μ
∣∣∣([Λs, ∂xv]∂xv,Λ

s∂xv
)∣∣∣

≤ cs
∣∣v∣∣

Hs+1
μ

∣∣v∣∣2
Hs+1

μ
.

Thus we proved

|B32| ≤ εC
(∥∥U∥∥

Xs
T

) ∣∣U ∣∣2
Xs .

Finally, we turn to B33 = ες([Λs, v]∂xv,TΛ
sv). From Lemma 5.2, one

has

|B33| ≤
∣∣[Λs, v]∂xv

∣∣
H1

μ

∣∣Λsv
∣∣
H1

μ

≤ ∣∣[Λs, v]∂xv
∣∣
L2

∣∣Λsv
∣∣
H1

μ
+
√
μ
∣∣∂x([Λs, v]∂xv

)∣∣
L2

∣∣Λsv
∣∣
H1

μ
.

Note the identity

∂x
(
[Λs, v]∂xv

)
=

(
[Λs, ∂xv]∂xv

)
+

(
[Λs, v]∂2xv

)
,

so that Lemma A.2 yields
√
μ|∂x([Λs, v]∂xv)|L2 ≤ |v|Hs+1

μ
|v|Hs+1

μ
.

Altogether, we proved

(6.27)
∣∣([Λs, A[U ]

]
∂xU, S[U ]

]
ΛsU

)∣∣ ≤ εC
(∥∥U∥∥

Xs
T

) ∣∣U ∣∣2
Xs .

• Estimate of 1
2 (Λ

sU, [∂t, S[U ]]Λ
sU). One has(

ΛsU,
[
∂t, S[U ]

]
ΛsU

)
≡ (Λsv,

[
∂t,T

]
Λsv) +

(
Λsζ,

[
∂t,

Q0(εζ)

f(εζ)

]
Λsζ

)

=
(
Λsv,

(
∂tq1(εζ)

)
Λsv

)
− μν

(
Λsv, ∂x

(
(∂tq2(εζ))(∂xΛ

sv)
))

+

(
Λsζ, ∂t

(
Q0(εζ)

f(εζ)

)
Λsζ

)

= εκ1

(
Λsv, (∂tζ)Λ

sv
)
+ μνεκ2

(
Λs∂xv, (∂tζ)Λ

s∂xv)
)

+ ε

(
Λsζ,

Q′
0(εζ)f(εζ)−Q0(εζ)f

′(εζ)
f(εζ)2

(∂tζ)Λ
sζ

)
.
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From Cauchy–Schwarz inequality and since ζ satisfies (H1), one deduces∣∣∣∣ 1

2

(
ΛsU,

[
∂t, S[U ]

]
ΛsU

) ∣∣∣∣ ≤ εC
(∥∥∂tζ∥∥L∞([0,T/ε]×R)

,
∥∥ζ∥∥

L∞([0,T/ε]×R)

) ∣∣U ∣∣2
Xs ,

and continuous Sobolev embedding yields

(6.28)

∣∣∣∣ 1

2

(
ΛsU,

[
∂t, S[U ]

]
ΛsU

) ∣∣∣∣ ≤ εC
(∥∥U∥∥

Xs
T

) ∣∣U ∣∣2
Xs .

Finally, let us recall the assumption of the lemma:

(6.29)
(
ΛsF, S[U ]ΛsU

) ≤ ε CF

∣∣U ∣∣2
Xs + f(t)

∣∣U ∣∣
Xs .

We now plug (6.25), (6.26), (6.27), (6.28), and (6.29) into (6.23). From Lemma 6.3,
it follows that

1

2

d

dt
Es(U)2 ≤ C0εE

s(U)2 + Es(U)f(t)

with C0 = C(
∥∥U∥∥

Xs
T

+ CF ), and consequently

d

dt
Es(U) ≤ εC0E

s(U) + f(t) .

Now, for any λ ∈ R, one has

eελt∂t(e
−ελtEs(U)) = −ελEs(U) +

d

dt
Es(U).

Thus with λ = C0, one has for all t ∈ [0, Tε ],

d

dt
(e−ελtEs(U)) ≤ f(t)e−ελt.

Integrating this differential inequality yields

∀ 0 ≤ t ≤ T

ε
, Es(U)(t) ≤ eελtEs(U0) + C0

∫ t

0

eελ(t−t′)f(t′)dt′.

This concludes the proof of Lemma 6.6.

6.3. Well-posedness of the linear system. Let us now state the main result
of this section.

Proposition 6.8. Set p = (μ, ε, δ, γ, bo) ∈ PCH (see (3.2)) and s ≥ s0 + 1 with
s0 > 1/2, and let Up = (ζp, vp)� ∈ Xs

T (see Definition 6.2) be such that (H1), (H2) are
satisfied for t ∈ [0, T/ε], uniformly with respect to p ∈ PCH. For any U0 ∈ Xs, there
exists a unique solution to (6.7), Up ∈ C0([0, T/ε];Xs) ∩ C1([0, T/ε];Xs−1) ⊂ Xs

T ,
and C0, λT = C(‖U‖Xs

T
, T,MCH, h

−1
01 , h

−1
02 ), independent of p ∈ PCH, such that one

has the energy estimates

∀ 0 ≤ t ≤ T

ε
, Es(Up)(t) ≤ eελT tEs(U0) and Es−1(∂tU

p) ≤ C0e
ελT tEs(U0).

Proof. The existence and uniqueness of a solution to the initial value problem (6.7)
follows, by standard techniques, from the a priori estimate (6.21) in Lemma 6.6:

(6.30) Es(U)(t) ≤ eελtEs(U0)
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(since F ≡ 0, and omitting the index p for the sake of simplicity.) We briefly recall
the argument below, and refer to [41, 36], for example, for more details.

First, let us notice that using the system of equations (6.7), one can deduce an
energy estimate on the time-derivative of the solution. Indeed, one has∣∣∂tU ∣∣

Xs−1 =
∣∣−A0[U ]∂xU −A1[U ]∂xU

∣∣
Xs−1

≤ ∣∣εf ′(εζ)v∂xζ + f(εζ)v∂xv
∣∣
Hs−1

+
∣∣T[εζ]−1

(
Q0(εζ)∂xζ + εQ[εζ, v]∂xv + ε2Q1(εζ, v)∂xζ

)
+ εςv∂xv

∣∣
Hs

μ

≤ C
(∣∣U ∣∣

Xs

) ∣∣U ∣∣
Xs ≤ C0e

ελT tEs(U0),(6.31)

where we use Lemmas A.1 and 5.3.
The completion of the proof is as follows. In order to construct a solution to (6.7),

we use a sequence of Friedrichs mollifiers, defined by Jν ≡ (1 − ν∂2x)
−1/2 (ν > 0), in

order to reduce our system to ordinary differential equation systems on Xs, which are
solved uniquely by Cauchy–Lipschitz theorem. Estimates (6.30), (6.31) hold for each
Uν ∈ C0([0, T/ε];Xs), uniformly in ν > 0. One deduces that a subsequence converges
toward U ∈ L2([0, T/ε];Xs), a (weak) solution of the Cauchy problem (6.7). By
regularizing the initial data as well, one can show that the system induces a smoothing
effect in time, and that the solution U ∈ C0([0, T/ε];Xs) ∩ C1([0, T/ε];Xs−1) is
actually a strong solution. The uniqueness is a straightforward consequence of (6.30)
(with U0 ≡ 0) applied to the difference of two solutions.

7. Proof of existence, stability, and convergence. In this section we prove
the main results of this paper. We start by proving an a priori estimate on the
difference of two possible solutions. The existence and uniqueness of the solution of
the Cauchy problem for our new Green–Naghdi type system, in the Camassa–Holm
regime ε = O(

√
μ) and over large times, is then deduced from the linear analysis of

the previous section and this a priori estimate. The estimate also provides
• the stability of the solution with respect to the initial data, thus the Cauchy
problem for our system is well-posed in the sense of Hadamard, in Sobolev
spaces (see subsection 7.2);

• the stability of the solution with respect to a perturbation of the equation,
which allows, together with the well-posedness, to fully justify our system
(and any other well-posed, consistent model) (see section 8).

7.1. One more a priori estimate. In this subsection, we control the difference
of two solutions of the nonlinear system, with different initial data and right-hand
sides. More precisely, we prove the following result.

Proposition 7.1. Let (μ, ε, δ, γ, bo) ∈ PCH and s ≥ s0 + 1, s0 > 1/2, and
assume that there exists Ui for i ∈ {1, 2}, such that one has Ui = (ζi, vi)

� ∈ Xs
T ,

U2 ∈ L∞([0, T/ε);Xs+1), ζ1 satisfies (H1), (H2) on [0, T/ε] with h01, h02 > 0, and Ui

satisfy

∂tU1 +A0[U1]∂xU1 +A1[U1]∂xU1 = F1 ,

∂tU2 +A0[U2]∂xU2 +A1[U2]∂xU2 = F2

with Fi ∈ L1([0, T/ε];Xs).
Then there exists constants C0 = C(MCH, h

−1
01 , h

−1
02 , ε|U1|Xs , ε|U2|Xs) as well as

λT = C0 × C(|U2|L∞([0,T/ε);Xs+1)) such that for all t ∈ [0, Tε ]

Es(U1 − U2)(t) ≤ eελT tEs(U1 |t=0 − U2 |t=0 ) + C0

∫ t

0

eελT (t−t′)Es(F1 − F2)(t
′)dt′.
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Proof. When multiplying the equations satisfied by Ui on the left by S[Ui], one
obtains

S[U1]∂tU1 +Σ0[U1]∂xU1 +Σ1[U1]∂xU1 = S[U1]F1,

S[U2]∂tU2 +Σ0[U2]∂xU2 +Σ1[U2]∂xU2 = S[U2]F2

with Σ0[U ] = S[U ]A0[U ] and Σ1[U ] = S[U ]A1[U ]. Subtracting the two equations
above and defining V = U1 − U2 ≡ (ζ, v)�, one obtains

S[U1]∂tV +Σ0[U1]∂xV +Σ1[U1]∂xV

= S[U1](F1 − F2)− (Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2])∂xU2

− (S[U1]− S[U2])(∂tU2 − F2).

We then apply S−1[U1] and deduce the following system satisfied by V :

(7.1)

{
∂tV +A0[U1]∂xV +A1[U1]∂xV = F,

V (0) = (U1 − U2) |t=0 ,

where,

F ≡ F1 − F2 − S−1[U1]
(
Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2]

)
∂xU2(7.2)

− S−1[U1]
(
S[U1]− S[U2]

)
(∂tU2 − F2).

We wish to use the energy estimate of Lemma 6.6 to the linear system (7.1). Thus
one needs to control accordingly the right hand side F .

In order to do so, we take advantage of the following lemma.
Lemma 7.2. Let (μ, ε, δ, γ, bo) ∈ PCH and s ≥ s0 > 1/2. Let V = (ζv, v)

�,
W = (ζw , w)

� ∈ Xs and U1 = (ζ1, v1)
�, U2 = (ζ2, v2)

� ∈ Xs such that there exists
h > 0 with

1− εζ1 ≥ h > 0, 1− εζ2 ≥ h > 0,
1

δ
+ εζ1 ≥ h > 0,

1

δ
+ εζ2 ≥ h > 0.

Then one has∣∣∣ ( Λs
(
S[U1]− S[U2]

)
V , W

) ∣∣∣ ≤ ε C
∣∣U1 − U2

∣∣
Xs

∣∣V ∣∣
Xs

∣∣W ∣∣
X0 ,(7.3) (

Λs
(
S[U1]A[U1]− S[U2]A[U2]

)
V , W

)
≤ ε C

∣∣U1 − U2

∣∣
Xs

∣∣V ∣∣
Xs

∣∣W ∣∣
X0(7.4)

with C = C(MCH, h
−1, ε|U1|Xs , ε|U2|Xs), and denoting A[·] ≡ A0[·] +A1[·].

Proof. Let V = (ζv, v)
�, W = (ζw, w)

� ∈ X0 and U1 = (ζ1, v1)
�, U2 =

(ζ2, v2)
� ∈ Xs. By definition of S[·] (see (6.8)), one has

(
Λs

(
S[U1]− S[U2]

)
V , W

)
=

(
Λs

(
Q0(εζ1)

f(εζ1)
− Q0(εζ2)

f(εζ2)

)
ζv , ζw

)

+
(
Λs

(
T[εζ1]− T[εζ2]

)
v , w

)
.

Now, one can check that

T[εζ1]v − T[εζ2]v =
(
q1(εζ1)− q1(εζ2)

)
v − μν∂x

{(
q2(εζ1)− q2(εζ2)

)
∂xv

}
= ε

(
κ1(ζ1 − ζ2)v − μν∂x

{
κ2(ζ1 − ζ2)∂xv

})
,
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so that, after one integration by part, and using Cauchy–Schwarz inequality and
Lemma A.1, one has

(7.5)
∣∣∣ ( Λs

(
T[εζ1]− T[εζ2]

)
v , w

) ∣∣∣ ≤ ε C(κ1, νκ2)
∣∣ζ1 − ζ2

∣∣
Hs

∣∣v∣∣
Hs+1

μ

∣∣w∣∣
H1

μ
.

In the same way, we remark that one can write Q0(X)
f(X) as a rational function:

Q0(X)

f(X)
= (γ + δ)

(
(1 +X)(1−X + γ(δ−1 +X))

(1 −X)(δ−1 +X)
≡ P (X)

Q(X)
.

It follows that

Q0(εζ1)

f(εζ1)
− Q0(εζ2)

f(εζ2)
=
P (εζ1)Q(εζ2)− P (εζ2)Q(εζ1)

Q(εζ1)Q(εζ2)

=

(
P (εζ1)− P (εζ2)

)
Q(εζ2)− P (εζ2)

(
Q(εζ1)−Q(εζ2)

)
Q(εζ1)Q(εζ2)

.

Since P (X) and Q(X) are polynomials, and using Lemma A.1, it is straightforward
to check that for s ≥ s0 > 1/2, one has

∣∣(P (εζ1)− P (εζ2)
)
Q(εζ2)− P (εζ2)

(
Q(εζ1)−Q(εζ2)

)∣∣
Hs

≤ εC(ε
∣∣ζ1∣∣Hs , ε

∣∣ζ2∣∣Hs)
∣∣ζ1 − ζ2

∣∣
Hs .

Now, applying Cauchy–Schwarz inequality and Lemma A.1 together with Lemma A.3,
one deduces that as long as

h1(εζ1), h2(εζ1), h1(εζ2), h2(εζ2) ≥ h > 0,

one has (again thanks to continuous Sobolev embedding for s ≥ s0 > 1/2)

(7.6)

∣∣∣∣
(

Λs

(
Q0(εζ1)

f(εζ1)
− Q0(εζ2)

f(εζ2)

)
ζv , ζw

)∣∣∣∣ ≤ ε C
∣∣ζ1 − ζ2

∣∣
Hs

∣∣ζv∣∣Hs

∣∣ζw∣∣L2

with C = C(MCH, h
−1, ε|ζ1|Hs , ε|ζ2|Hs). Estimates (7.5) and (7.6) yield (7.3).

Let us now turn to (7.4). One has(
Λs

(
S[U1]A[U1]− S[U2]A[U2]

)
V , W

)
(7.7)

= ε

(
Λs

(
Q0(εζ1)

f(εζ1)
f ′(εζ1)v1 − Q0(εζ2)

f(εζ2)
f ′(εζ2)v2

)
ζv , ζw

)

+
(
Λs

(
Q0(εζ1)−Q0(εζ2)

)
v , ζw

)
+

(
Λs

(
Q0(εζ1)−Q0(εζ2)

)
ζv , w

)
+ ε2

(
Λs

(
Q1(εζ1, v1)−Q1(εζ2, v2)

)
ζv , w

)
+ ε

(
Λs

(
Q[εζ1, v1]−Q[εζ2, v2]

)
v , w

)
+ ες

(
Λs

(
T[εζ1](v1 v)− T[εζ2](v2 v)

)
, w

)
.

The second and third terms in the right-hand side of (7.7) may be estimated exactly
as in (7.6), and we do not detail the precise calculations. The first term follows in the
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same way, using the decomposition

ε

(
Q0(εζ1)

f(εζ1)
f ′(εζ1)v1 − Q0(εζ2)

f(εζ2)
f ′(εζ2)v2

)

=

(
Q0(εζ1)

f(εζ1)
f ′(εζ1)− Q0(εζ2)

f(εζ2)
f ′(εζ2)

)
(εv1)

+ ε(v1 − v2)
Q0(εζ2)

f(εζ2)
f ′(εζ2),

so that one has∣∣∣∣
(

Λs

(
Q0(εζ1)

f(εζ1)
f ′(εζ1)v1 − Q0(εζ2)

f(εζ2)
f ′(εζ2)v2

)
ζv , ζw

)∣∣∣∣
≤ C

(
ε
∣∣v1∣∣Hs

)
ε
∣∣ζ1 − ζ2

∣∣
Hs

∣∣ζv∣∣Hs

∣∣ζw∣∣L2

+ C
(
ε
∣∣ζ2∣∣Hs

)
ε
∣∣v1 − v2

∣∣
Hs

∣∣ζv∣∣Hs

∣∣ζw∣∣L2 .

The fourth term is similar, as ε2Q1(εζi, vi) = Q1(εζi, εvi) is a bivariate polynomial.
Let us detail the last two estimates. One has(

Q[εζ1, v1]−Q[εζ2, v2]
)
v = 2

(
q1(εζ1)q3(εζ1)v1 − q1(εζ2)q3(εζ2)v2

)
v(7.8)

+μκ∂x
(
v∂x(v1 − v2)

)
.

Again, the contribution of the first term in (7.8) is estimated as above (recalling that
this term is multiplied by a ε- factor), and the contribution of the last term in (7.8)
is estimated below:∣∣∣εμκ( Λs∂x

(
v∂x(v1 − v2)

)
, w

)∣∣∣ ≤ Cεκ
∣∣v1 − v2

∣∣
Hs+1

μ

∣∣v∣∣
Hs

∣∣w∣∣
H1

μ
.

We conclude by estimating the last term in (7.7). One has

T[εζ1](v1 v)− T[εζ2](v2 v) =
(
q1(εζ1)v1 − q1(εζ2)v2

)
v

− μν∂x
{(
q2(εζ1)∂x(v1 v)− q2(εζ2)∂x(v2 v)

}
=

(
T[εζ1]− T[εζ2]

)
(v1 v) + (v1 − v2)

(
q1(εζ2)v

)
− μν∂x

{
q2(εζ2)∂x

(
(v1 − v2) v

)}
.

One finally uses Cauchy–Schwarz inequality, Lemma A.1, and (7.5) to obtain∣∣∣ ε( Λs
(
T[εζ1](v1 v)− T[εζ2](v2 v)

)
, w

) ∣∣∣
≤ ε2 C(κ1, νκ2)

∣∣ζ1 − ζ2
∣∣
Hs

∣∣v1 v∣∣Hs+1
μ

∣∣w∣∣
H1

μ

+ ε C(κ1ε
∣∣ζ2∣∣Hs)

∣∣v1 − v2
∣∣
Hs

∣∣v∣∣
Hs

∣∣w∣∣
L2

+ νε C(κ2ε
∣∣ζ2∣∣Hs)

∣∣v1 − v2
∣∣
Hs+1

μ

∣∣v∣∣
Hs+1

μ

∣∣w∣∣
H1

μ
.

Altogether, we obtain (7.4), and Lemma 7.2 is proved.
Let us continue the proof of Proposition 7.1, by estimating F defined in (7.2),

which we recall:

F ≡ F1 − F2 − S−1[U1]
(
Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2]

)
∂xU2(7.9)

− S−1[U1]
(
S[U1]− S[U2]

)
(∂tU2 − F2).

D
ow

nl
oa

de
d 

01
/1

4/
15

 to
 1

29
.2

0.
36

.2
26

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A NEW MODEL FOR THE PROPAGATION OF INTERNAL WAVES 279

More precisely, we want to estimate(
ΛsF , S[U1]Λ

sV
)

=
(
ΛsF1 − ΛsF2 , S[U1]Λ

sV
)

− (
Λs(Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2])∂xU2 , Λ

sV
)

− (
Λs(S[U1]− S[U2])(∂tU2 − F2) , Λ

sV
)

− ( [
Λs, S−1[U1]

]
(Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2])∂xU2 , S[U1]Λ

sV
)

− ( [
Λs, S−1[U1]

]
(S[U1]− S[U2])(∂tU2 − F2) , S[U1]Λ

sV
)

= (I) + (II) + (III) + (IV) + (V).

Let us estimate each of these terms. The contribution of (I) is immediately
bounded using Lemma 6.4:

(7.10)
∣∣ (I) ∣∣ ≤ C|F1 − F2|Xs |V |Xs

with C = C(MCH, h
−1, ε|U1|L∞).

The contributions of (II) and (III) follow from Lemma 7.2. Indeed, recalling that
V ≡ U1 − U2, (7.3) yields immediately

(7.11)
∣∣ (III) ∣∣ ≤ Cε|∂tU2 − F2|Xs |V |2Xs ,

and (7.4) yields

(7.12)
∣∣ (II) ∣∣ ≤ Cε|∂xU2|Xs |V |2Xs

with C = C = C(MCH, h
−1, ε|U1|Xs , ε|U2|Xs).

Finally, we control (IV) and (V) using Lemma 6.4, (6.13):∣∣( [
Λs, S−1[U1]

]
U , S[U1]Λ

sV
)∣∣ ≤ C|U |Hs−1×Hs−1 |V |Xs

with C = C(MCH, h
−1, ε|ζ1|Hs).

Thus it remains to estimate |U |Hs−1 , where U ≡ U(i) ≡ (Σ0[U1]+Σ1[U1]−Σ0[U2]−
Σ1[U2])∂xU2 or U ≡ U(ii) ≡ (S[U1]− S[U2])(∂tU2 − F2).

We proceed as in Lemma 7.2, helped by the fact that one is allowed to lose one
derivative in our estimates. Let W ≡ ∂tU2 − F2 ≡ (ζw , w)

�. One has

U(ii) ≡ (S[U1]− S[U2])W ≡

⎛
⎜⎝
(
Q0(εζ1)

f(εζ1)
− Q0(εζ2)

f(εζ2)

)
ζw(

T[εζ1]− T[εζ2]
)
w

⎞
⎟⎠ ≡

(
ζ(ii)
u(ii)

)
.

Recall that

T[εζ1]w − T[εζ2]w = ε
(
κ1(ζ1 − ζ2)w − μν∂x

{
κ2(ζ1 − ζ2)∂xw

})
,

so that one has straightforwardly

|u(ii)|Hs−1 ≤ εC(κ1, νκ2)|ζ1 − ζ2|Hs |w|Hs+1
μ

.

As for the first component, we apply (7.6) and deduce

|ζ(ii)|2Hs−1 =
(
Λs−1ζ(ii),Λ

s−1ζ(ii)
) ≤ εC|ζ1 − ζ2|Hs−1 |ζw |Hs−1 |ζ(ii)|Hs−1 .
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It follows that

(7.13)
∣∣ (V) ∣∣ ≤ Cε|∂tU2 − F2|Xs |V |2Xs

with C = C(MCH, h
−1, ε|U1|Xs , ε|U2|Xs).

Now, recall U(i) ≡ (Σ0[U1]+Σ1[U1]−Σ0[U2]−Σ1[U2])∂xU2. Proceeding as above,
one obtains ∣∣ U(i)

∣∣
Hs−1 ≤ C|∂xU2|Xs |V |Xs ,

and thus

(7.14)
∣∣ (IV) ∣∣ ≤ Cε|∂xU2|Xs |V |2Xs .

Altogether, we proved (using Lemma 6.3) that F , as defined in (7.2), satisfies
(7.15)∣∣∣(ΛsF, S[U1]Λ

sV
)∣∣∣ ≤ C0(|∂xU2|Xs + |∂tU2 − F2|Xs)εEs(V )2 + C0E

s(V )Es(F1 − F2)

with C0 = C(MCH, h
−1, ε|U1|Xs , ε|U2|Xs). Notice also that by the system satisfied by

U2, one has (see detailed calculations in (6.31))

|∂tU2 − F2|Xs ≡ −|(A0[U2] +A1[U2])∂xU2|Xs

≤ C(|U2|Xs+1)

We can now conclude by Lemma 6.6, and the proof of Proposition 7.1 is com-
plete.

7.2. Well-posedness result. In this section, we prove the well-posedness of
the Cauchy problem for our new Green–Naghdi type model (4.15) in the sense of
Hadamard. Existence and uniqueness of the solution is given by Theorem 7.3, while
the stability with respect to the initial data is provided by Theorem 7.4. These results
correspond to Theorems 3.2 and 3.3, as stated in section 3.

Theorem 7.3 (existence and uniqueness). Let p = (μ, ε, δ, γ, bo) ∈ PCH and
s ≥ s0 + 1, s0 > 1/2, and assume U0 = (ζ0, v0)

� ∈ Xs satisfies (H1), (H2). Then
there exists a maximal time Tmax > 0, such that the system of equations (4.15) admits
a unique strong solution U = (ζ, v)� ∈ C0([0, Tmax);X

s) ∩ C1([0, Tmax);X
s−1) with

the initial value (ζ0, v0) |t=0 = (ζ0, v0), and preserves the conditions (H1), (H2) (with
different lower bounds) for any t ∈ [0, Tmax).

Moreover, there exists T−1, C0, λ = C(MCH, h
−1
01 , h

−1
02 , |U0|Xs), independent of

p ∈ PCH, such that Tmax ≥ T/ε, and one has the energy estimates

∀ 0 ≤ t ≤ T

ε
,

∣∣U(t, ·)∣∣
Xs +

∣∣∂tU(t, ·)∣∣
Xs−1 ≤ C0e

ελt .

If Tmax <∞, one has

|U(t, ·)|Xs −→ ∞ as t −→ Tmax,

or one of the two conditions (H1), (H2) ceases to be true as t −→ Tmax.
Proof. We construct a sequence of approximate solution (Un = (ζn, un))n≥0

through the induction relation

(7.16) U0 = U0 and ∀n ∈ N,

{
∂tU

n+1 +A[Un]∂xU
n+1 = 0,

Un+1
|t=0

= U0.
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By Proposition 6.8, there exists Un+1 ∈ C0([0, Tn+1/ε];X
s) ∩ C1([0, Tn+1/ε];X

s−1)
unique solution to (7.16) provided Un ∈ C0([0, Tn/ε];X

s)∩C1([0, Tn/ε];X
s−1) ⊂ Xs

T

and satisfies (H1), (H2).
Existence and uniform control of the sequence Un. The existence of T ′ > 0 such

that the sequence Un is uniquely defined, controlled in Xs
T ′ , and satisfies (H1), (H2),

uniformly with respect to n ∈ N, is obtained by induction, as follows.
Proposition 6.8 yields

(7.17)
Es(Un+1)(t) ≤ eελntEs(U0),

∣∣∂tUn+1(t, ·)∣∣
Xs−1 ≤ CnE

s(Un+1) ≤ Cne
ελntEs(U0)

with λn, Cn = C(MCH, h
−1
01,n, h

−1
02,n, ‖Un‖Xs

Tn
), provided Un ∈ Xs

Tn
satisfies (H1),

(H2) with positive constants h01,n, h02,n on [0, Tn/ε].
Since Un = (ζn, vn)� satisfies (7.16), one has

∂tζ
n+1 = −εf ′(εζn)vn∂xζn+1 − f(εζn)∂xv

n+1.

Using continuous Sobolev embedding of Hs−1 into L∞ (s − 1 > 1/2), and since ζn

satisfies (H1), (H2) with h01,n, h02,n on [0, Tn/ε], one deduces that

(7.18) |∂tζn+1|L∞ ≤ C(MCH, h
−1
01,n, h

−1
02,n

)∥∥Un
∥∥
Xs

Tn

.

Let gn+1 = a+ bεζn+1, where (a, b) ∈ {(1,−1), (1δ , 1), (1, κ1), (1, κ2)}. One has

gn+1 = gn+1 |t=0 + bε

∫ t

0

∂tζ
n+1,

so that (7.18) yields

|gn+1 − gn+1 |t=0 |L∞ ≤ εt × bC(MCH, h
−1
01,n, h

−1
02,n

)∥∥Un
∥∥
Xs

Tn

.

Now, one has gn+1 |t=0 ≡ g0 |t=0 ≥ min(h01,0, h02,0) > 0, independent of n. Thus
one can easily prove (by induction) that it is possible to chose T ′ > 0 such that
gn+1 > α/2 holds on [0, T ′/ε], and the above energy estimates hold uniformly with
respect to n, on [0, T ′/ε]. More precisely, one has that ζn satisfies (H1), (H2) with
h01/2, h02/2 > 0 and the estimates

(7.19) Es(Un)(t) ≤ eελtEs(U0) and
∣∣∂tUn(t, ·)∣∣

Xs−1 ≤ C0e
ελtEs(U0),

on [0, T ′/ε], where λ,C0 = C(MCH, h
−1
01 , h

−1
02 ,

∣∣U0

∣∣
Xs) are uniform with respect to n.

Convergence of Un toward a solution of the nonlinear problem. We now conclude
by proving that the sequence Un converges toward a solution of our nonlinear problem.
In order to do so, let us define V n ≡ Un+1 − Un. V n satisfies the system

(7.20)

{
∂tV

n +A0[U
n]∂xV

n +A1[U
n]∂xV

n = Fn,
V n |t=0 ≡ 0,

where,

Fn ≡ −S−1[Un](Σ0[U
n] + Σ1[U

n]− Σ0[U
n−1]− Σ1[U

n−1])∂xU
n(7.21)

− S−1[Un](S[Un]− S[Un−1])∂tU
n.
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We wish to use the energy estimate of Lemma 6.5 to the linear system (7.20). Thus
one needs to control accordingly the right-hand side Fn.

More precisely, we want to estimate(
Fn , S[Un]V n

)
= −(

(Σ0[U
n] + Σ1[U

n]− Σ0[U
n−1]− Σ1[U

n−1])∂xU
n , V n

)
− (

(S[Un]− S[Un−1])∂tU
n , V n

)
.

Proceeding as in Lemma 7.2, one can easily deduce∣∣( Fn , S[Un]V n
)∣∣ ≤ εC

∣∣Un − Un−1
∣∣
X0

∣∣V n
∣∣
X0(

∣∣∂xUn
∣∣
X0 +

∣∣∂tUn
∣∣
X0)

with C = C(MCH, h
−1
01 , h

−1
02 , ε|Un−1|W 1,∞ , ε|Un|W 1,∞).

Using the uniform control of Un, ∂tU
n in (7.19), one deduces∣∣( Fn , S[Un]V n

)∣∣ ≤ εC0

∣∣V n−1
∣∣
X0

∣∣V n
∣∣
X0

with C0 independent of n. Thus Lemma 6.5 yields, for any t ∈ [0, T ′/ε],

E0(V n)(t) ≤ εC0

∫ t

0

eελ(t−t′)E0(V n−1)(t′)dt′ ≤ εC

∫ t

0

E0(V n−1)(t′)dt′,

where C is independent of n and t. Hence,

∀t ∈
[
0,
T ′

ε

]
, E0(V n)(t) ≤ εntnCn

n!
sup

t′∈[0,T ′/ε]
E0(V 0)(t′),

and the sequence Un ≡ U0 +
∑
V n converges in C0([0, T ′/ε];X0).

Completion of the proof. Since Un converges in C0([0, T ′/ε];X0) and is uniformly
bounded in Xs, standard interpolation arguments imply that the sequence Un con-
verges in C0([0, T ′/ε];Xs′) for any s′ < s. Similarly, one proves that ∂tU

n converges in
C0([0, T ′/ε];Xs′−1). Choosing s′−1 > 1/2, one may pass to the limit all the terms in
system (7.16), and one deduces that the limit U is a solution of system (4.15). Passing
to the limit the properties of Un, and in particular the energy estimates (7.19), one
deduces U ∈ L∞([0, T/ε];Xs), ∂tU ∈ L∞([0, T/ε];Xs−1), and U satisfies the energy
estimate of the theorem (using Lemma 6.3) and preserves the conditions (H1), (H2)

for any t ∈ [0, T
′
ε ], independently of p ∈ PCH.

Finally, as in Proposition 6.8 (with U ≡ U), one can prove that one has actually
U ∈ C0([0, T ′/ε];Xs) ∩ C1([0, T ′/ε];Xs−1). The uniqueness of U follows from the
stability result of Proposition 7.1 with F1 ≡ F2 ≡ 0, and one can therefore define a
maximal time of existence of the solution, which we denote Tmax. Tmax is bounded
from below by T ′/ε > 0, and the behavior of the solution as t → Tmax if Tmax < ∞
follows from standard continuation arguments.

Theorem 7.4 (stability). Let (μ, ε, δ, γ, bo) ∈ PCH, s ≥ s0 + 1 with s0 > 1/2,
and assume U0,1 = (ζ0,1, v0,1)

� ∈ Xs and U0,2 = (ζ0,2, v0,2)
� ∈ Xs+1 satisfies (H1),

(H2). Denote Uj the solution to (4.15) with Uj |t=0 = U0,j.Then there exists constants
T−1, λ, C0 = C(MCH, h

−1
01 , h

−1
02 ,

∣∣U0,1

∣∣
Xs , |U0,2|Xs+1) such that

∀ 0 ≤ t ≤ T

ε
,

∣∣(U1 − U2)(t, ·)
∣∣
Xs ≤ C0e

ελt
∣∣U0,1 − U0,2

∣∣
Xs .

Proof. The existence and uniform control of the solution U1 (resp., U2) in L
∞([0,

T/ε];Xs) (resp., L∞([0, T/ε];Xs+1)) is provided by Theorem 7.3. The proposition is
then a direct consequence of the a priori estimate of Proposition 7.1, with F1 = F2 = 0,
and Lemma 6.3.
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8. Full justification of asymptotic models. We conclude our work by ex-
plaining how the results of the previous sections allow us to fully justify our system
(and other consistent ones) as an asymptotic model for the propagation of internal
waves. A model is said to be fully justified (using the terminology of [29]) if the Cauchy
problem for both the full Euler system and the asymptotic model is well-posed for
a given class of initial data, and over the relevant time scale, and if the solutions
with corresponding initial data remain close. As described in [31, section 6.3], the full
justification of a system (S) follows from these points:

• (Consistency) One proves that families of solutions to the full Euler system,
existing and controlled over the relevant time scale, satisfy the system (S) up
to a small residual.

• (Existence) One proves that families of solutions to the full Euler system as
above do exist. This difficult step is ensured by Theorem 5 (or Theorem 6 for
large times) in [31], provided that a stability criterion is satisfied (see details
therein).

• (Convergence) One proves that the solutions of the full Euler system, and the
ones of the system (S), with corresponding initial data, remain close over the
relevant time scale.

The last step supposes that the Cauchy problem for the model is well-posed, and is
a consequence of the stability of its solutions with respect to perturbations of the
equations, so that the first two steps of the procedure (consistency and existence)
yield the conclusion (convergence) and therefore the full justification of the model.
Let us refer to Theorem 7 in [31] for the application of such procedure for the full
justification of the so-called shallow-water/shallow-water asymptotic model, which
corresponds to our system, when withdrawing O(μ) terms.

The consistency of our model has been given in Theorem 3.1. The well-posedness
of the Cauchy problem is stated in Theorem 3.2, and the stability results is a conse-
quence of Proposition 7.1. Thus we have all the ingredients for the full justification
of our model, stated in Theorem 3.4, and which we recall below.

Theorem 8.1 (convergence). Let p ≡ (μ, ε, δ, γ, bo) ∈ PCH (see (3.2)) and
s ≥ s0 + 1 with s0 > 1/2, and let U0 ≡ (ζ0, ψ0)� ∈ Hs+N (R)2, N sufficiently large,
satisfy the hypotheses of Theorem 5 in [31] as well as (H1), (H2). Then there exists
C, T > 0, independent of p, such that

• there exists a unique solution U ≡ (ζ, ψ)� to the full Euler system (2.4), de-
fined on [0, T ] and with initial data (ζ0, ψ0)� (provided by Theorem 5 in [31]);

• there exists a unique solution Ua ≡ (ζa, va)
� to our new model (3.3), defined

on [0, T ] and with initial data (ζ0, v0)� (provided by Theorem 3.2);
• with v̄ ≡ v̄[ζ, ψ], defined as in (3.4), one has for any t ∈ [0, T ],∣∣(ζ, v̄)− (ζa, va)

∣∣
L∞([0,t];Xs)

≤ C μ2 t.

Proof. As stated above, the existence of U is provided by Theorem 5 in [31], and
the existence of Ua is given by our Theorem 3.2. (We choose T as the minimum of the
existence time of both solutions; it is bounded from below, independently of p ∈ PCH.)
If N is large enough, then U ≡ (ζ, ψ)� satisfies the assumptions of our consistency
result, Theorem 3.1, and therefore (ζ, v̄)� solves (3.3) up to a residual R = (r1, r2)

�

with |R|L∞([0,T ];Hs) ≤ C(MCH, h
−1
01 , |U0|Hs+N )(μ2 +με2). The result follows from the

stability Proposition 7.1 with F1 = (r1,T[εζ]
−1r2)

� and F2 = 0.
In addition to allowing the complete, full justification of our model, the results of

the previous sections allow us to rigorously justify any lower order, well-posed, and
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consistent model. We quickly show how to apply the procedure to such models, with
the example of the so-called Constantin–Lannes decoupled approximation, introduced
by one of the authors in [20], and which we recall below.

Definition 8.2 (Constantin–Lannes decoupled approximation model). Let ζ0, v0

be given scalar functions, and set parameters (μ, ε, δ, γ, bo) ∈ PCH, as defined in (3.2),
and (λ, θ) ∈ R

2. The Constantin–Lannes decoupled approximation is then

UCL ≡
(
v+(t, x− t) + v−(t, x+ t), (γ + δ)

(
v+(t, x− t)− v−(t, x+ t)

))
,

where v± |t=0 = 1
2 (ζ

0 ± v0

γ+δ ) |t=0 and v± = (1± μλ∂2x)
−1vλ± with vλ± satisfying

(8.1) ∂tv
λ
± ± εα1v

λ
±∂xv

λ
± ± ε2α2(v

λ
±)

2∂xv
λ
± ± ε3αθ,λ

3 (vλ±)
3∂xv±

± μνθ,λx ∂3xv
λ
± − μνθ,λt ∂2x∂tv

λ
± ± με∂x

(
κθ,λ1 vλ±∂

2
xv

λ
± + κθ2(∂xv

λ
±)

2
)
= 0

with parameters defined as follows:

(8.2)

α1 =
3

2

δ2 − γ

γ + δ
, α2 = −3

γδ(δ + 1)2

(γ + δ)2
, α3 = −5

δ2(δ + 1)2γ(1− γ)

(γ + δ)3
,

νθ,λt ≡ θ

6

1 + γδ

δ(γ + δ)
+ λ, νθ,λx ≡ 1− θ

6

1 + γδ

δ(γ + δ)
− 1

2bo
− λ,

κθ,λ1 ≡ (1 + γδ)(δ2 − γ)

3δ(γ + δ)2

(
1 +

1− θ

4

)
− (1 − γ)

6(γ + δ)
+ λ

3

2

δ2 − γ

γ + δ
,

κθ2 ≡ (1 + γδ)(δ2 − γ)

3δ(γ + δ)2

(
1 +

1− θ

4

)
− (1− γ)

12(γ + δ)
.

Remark 8.3. The scalar equation (8.1) has been introduced as a model for the
gravity surface wave (one layer of homogeneous fluid) in [26], and its rigorous justifica-
tion has been developed in [13]. The justification is to be understood in the following
sense: if one chooses carefully the initial data (so as to focus on only one direction of
propagation), then the Constantin–Lannes equation provides a good (unidirectional)
approximation of the flow. The reason a bidirectional, decoupled approximation as
above has not been developed in the water-wave setting is that lower order scalar
equations offer the same accuracy. The specificity of internal waves lies in the exis-
tence of a critical ratio (δ2 = γ) for which quadratic nonlinearities vanish, thus calling
for higher order decoupled models, especially in the Camassa–Holm regime.

The Cauchy problem for (8.1) has been proved to be locally well-posed in [13],
and a property of persistence of spatial decay at infinity has been proved in [20]. We
state these results below.

Proposition 8.4 (well-posedness and persistence). Let u0 ∈ Hs+1 with given

s ≥ s0 + 1, s0 > 1/2. Let the parameters in (8.2) be such that μ, ε, νθ,λt > 0, and
define m > 0 such that

(8.3) νθ,λt + (νθ,λt )−1 + μ+ ε+ |α1|+ |α2|+ |α3|+ |νθ,λx |+ |κθ,λ1 |+ |κθ2| ≤ m.

Then there exists T = C(m, |u0|Hs+1
μ

) and u ∈ C0([0, T/ε);Hs+1
μ ) ∩ C1([0, T/ε);Hs

μ)

such that u satisfies (8.1) and initial data u |t=0 = u0.
Moreover, u satisfies the following energy estimate for 0 ≤ t ≤ T/ε:

∥∥∂tu∥∥L∞([0,T/ε);Hs
μ)

+
∥∥u∥∥

L∞([0,T/ε);Hs+1
μ )

≤ C
(
m,

∣∣u0∣∣
Hs+1

μ

)
.
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Assume additionally that for fixed n, k ∈ N, one has xju0 ∈ Hs+s̄ with 0 ≤ j ≤ n
and s̄ = k+ 1+ 2(n− j). Then there exists T = C(m,n, k,

∑n
j=0 |xju0|Hs+k+1+2(n−j)

μ
)

such that for 0 ≤ t ≤ T ×min(1/ε, 1/μ), one has

∥∥xn∂k∂tu∥∥L∞([0,t);Hs
μ)

+
∥∥xn∂ku∥∥L∞([0,t);Hs+1

μ )

≤ C

⎛
⎝m,n, k, n∑

j=0

∣∣xju0∣∣
H

s+k+1+2(n−j)
μ

⎞
⎠ .

The decoupled model of Definition 8.2 is consistent with our new model (3.3), in
the following way.

Proposition 8.5 (consistency). Let ζ0, v0 ∈ Hs+6 with given s ≥ s0 + 1,
s0 > 1/2. For (μ, ε, δ, γ, bo) = p ∈ PCH, we denote Up

CL the unique solution of
the Constantin–Lannes approximation, as defined in Definition 8.2. For some given
M�

s+6 > 0, sufficiently large, assume that there exists T � > 0 and a family (Up
CL)p∈PCH

such that

T � = max
{
T ≥ 0 s. t.

∥∥Up
CL

∥∥
L∞([0,T );Hs+6)

+
∥∥∂tUp

CL

∥∥
L∞([0,T );Hs+5)

≤M�
s+6

}
.

Then there exists U c = U c[Up
CL] such that U ≡ Up

CL + U c satisfies our Green–
Naghdi type system (3.3) up to a remainder R bounded for t ∈ [0, T �] by∥∥R∥∥

L∞([0,t];Hs)
≤ C max(ε2(δ2 − γ)2, μ2) (1 +

√
t)

with C = C(M�
s+6,MCH, |λ|, |θ|), and the corrector term U c is estimated as∥∥U c

∥∥
L∞([0,t];Hs)

+
∥∥∂tU c

∥∥
L∞([0,t];Hs)

≤ C max(ε(δ2 − γ), μ)min(t,
√
t).

Additionally, if there exists α > 1/2, M �
s+6, T

� > 0 such that

6∑
k=0

∥∥(1 + x2)α∂kxU
p
CL

∥∥
L∞([0,T );Hs)

+

5∑
k=0

∥∥(1 + x2)α∂kx∂tU
p
CL

∥∥
L∞([0,T );Hs)

≤M �
s+6 ,

then the remainder term R is uniformly bounded for t ∈ [0, T �],∥∥R∥∥
L∞([0,t];Hs)

≤ C max(ε2(δ2 − γ)2, μ2),

with C = C(M �
s+6,MCH, |λ|, |θ|), and U c is uniformly estimated as∥∥U c

∥∥
L∞([0,t];Hs)

+
∥∥∂tU c

∥∥
L∞([0,t];Hs)

≤ C max(ε(δ2 − γ), μ)min(t, 1).

Proof. A similar statement concerning the consistency of the Constantin–Lannes
decoupled approximation towards the original Green–Naghdi system (4.6) (in the shal-
low water regime (3.1) and neglecting the surface tension contributions) has been given
in [20, Proposition 1.12]. Taking into account the surface tension contribution only
requires a slight modification in one of the parameters (one has νθ,λx = 1−θ

6
1+γδ
δ(γ+δ) − λ

in [20]), as shown by tedious but straightforward calculations. Finally, using the
boundedness of Up

CL assumed in the statement, and following the proof of Theo-
rem 3.1, one easily checks that the corresponding result holds with regards to our
system (3.3), in the more stringent Camassa–Holm regime (3.2).
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Remark 8.6. Let us note that Proposition 8.4 ensures that the above result is
not empty, but on the contrary is valid for long times (provided that νθ,λt > 0 and the
initial data sufficiently smooth). More precisely, if the initial data (ζ0, v0) = U0 ∈
Hs+7, s ≥ s0 + 1, s0 > 1/2, then for any p ∈ PCH and λ, θ such that νθ,λt > ν0 >
0, there exists C1, C2 independent of p, such that for M�

s+6 ≥ C1, the decoupled
approximate solution satisfies the uniform bound of Proposition 8.5 with T � ≥ C2/ε.

Moreover, upon additional condition on the decaying in space of the initial data,
there exists C1, C2 such that for any M �

s+6 ≥ C1, one has T � ≥ C2/max(ε, μ).
The above properties, thanks to the well-posedness and stability of our Green–

Naghdi-type system proved in this work, are sufficient to fully justify the solutions
of the Constantin–Lannes decoupled approximation as approximate solutions of our
model, and therefore as approximate solutions of the full Euler system (2.4).

Proposition 8.7 (convergence of the decoupled model). Let λ, θ ∈ R and p ≡
(μ, ε, δ, γ, bo) ∈ PCH be such that (8.3) holds. Let U0 ≡ (ζ0, ψ0)� ∈ Hs+N with N
sufficiently large satisfy the hypotheses of Theorem 5 in [31] as well as (H1), (H2).
Denote by Up ≡ (ζ, ψ)� the solution of the full Euler system (2.4) and by Up

CL the
decoupled approximation defined in Definition 8.2 with initial data U0. Then there
exists C, T > 0, independent of p ∈ PCH, such that for any 0 ≤ t ≤ T , one has∥∥Up

CL − U
p∥∥

L∞([0,t];Hs)
≤ C

(
ε0 min(t, t1/2)(1 + ε0t)

)
with ε0 ≡ max(ε(δ2−γ), μ), and Up ≡ (ζ, v̄[ζ, ψ])�, where v̄[ζ, ψ] is defined as in (3.4).

Moreover, if the initial data is sufficiently localized in space, as in the second part
of Proposition 8.5, then one has∥∥Up

CL − U
p∥∥

L∞([0,t];Hs)
≤ C

(
ε0 min(t, 1)(1 + ε0t)

)
.

Proof. By Proposition 8.5, we know that for any Up
CL, there exists U c = U c[Up

CL]
such that U ≡ Up

CL + U c satisfies the Green–Naghdi type system (3.3), up to a small
remainder R. Controlling the difference ‖U − UGN

p‖, where UGN
p is the solution

of system (3.3) with corresponding initial data, is done exactly as in Theorem 3.4,
and we omit the proof. The result is then a straightforward consequence of the
triangular inequality, as ‖Up−UGN

p‖ is estimated in Theorem 3.4, and ‖U c[Up
CL]‖ in

Proposition 8.5.

Appendix A. Product and commutator estimates in Sobolev spaces.
Let us recall here some product as well as commutator estimates in Sobolev spaces,
used throughout the present paper.

Lemma A.1 (product estimates). Let s ≥ 0; one has for all f, g ∈ Hs(R)
⋂
L∞(R),∣∣ f g ∣∣

Hs �
∣∣ f ∣∣

L∞
∣∣ g ∣∣

Hs +
∣∣ f ∣∣

Hs

∣∣ g ∣∣
L∞ .

If s ≥ s0 > 1/2, one deduces thanks to continuous embedding of Sobolev spaces,∣∣ f g ∣∣
Hs �

∣∣ f ∣∣
Hs

∣∣ g ∣∣
Hs .

More generally, for s ≥ 0 and s0 > 1/2, one has for all f ∈ Hs(R)
⋂
Hs0(R), g ∈

Hs(R), ∣∣ f g ∣∣
Hs �

∣∣ f ∣∣
Hs0

∣∣ g ∣∣
Hs +

〈∣∣ f ∣∣
Hs

∣∣ g ∣∣
Hs0

〉
s>s0

.
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Let F ∈ C∞(R) such that F (0) = 0. If g ∈ Hs(R)
⋂
L∞(R) with s ≥ 0, one has

F (g) ∈ Hs(R) and ∣∣ F (g) ∣∣
Hs ≤ C

(∣∣g∣∣
L∞ ,

∣∣F ∣∣
C∞

) ∣∣ g ∣∣
Hs .

Finally, we will use ∣∣ f g ∣∣
Hs+1

μ
≤ C

∣∣ f ∣∣
Hs+1

μ

∣∣ g∣∣
Hs+1

μ
.

The first estimates are classical (see [27, 1, 30]), and the last one follows straight-
forwardly from∣∣ f g ∣∣2

Hs+1
μ

�
∣∣ f g ∣∣2

Hs +μ
∣∣ ∂x(f g) ∣∣2Hs �

∣∣ f ∣∣2
Hs

∣∣ g ∣∣2
Hs +μ

∣∣ g ∂xf ∣∣2
Hs +μ

∣∣ f ∂xg ∣∣2
Hs .

We now recall the commutator estimate, mainly due to Kato and Ponce [27], and
recently improved by Lannes [30] (see Theorems 3 and 6).

Lemma A.2 (commutator estimates). For any s ≥ 0, and ∂xf, g ∈ L∞(R)
⋂
Hs−1

(R), one has ∣∣ [Λs, f ]g
∣∣
L2 �

∣∣ ∂xf ∣∣
Hs−1

∣∣ g ∣∣
L∞ +

∣∣ ∂xf ∣∣
L∞

∣∣ g ∣∣
Hs−1 .

Thanks to continuous embedding of Sobolev spaces, one has for s ≥ s0 + 1, s0 >
1
2 ,∣∣ [Λs, f ]g

∣∣
L2 �

∣∣ ∂xf ∣∣
Hs−1

∣∣ g ∣∣
Hs−1 .

More generally, for any s ≥ 0 and s0 > 1/2, ∂xf, g ∈ Hs0(R)
⋂
Hs−1(R), one has∣∣ [Λs, f ]g

∣∣
L2 �

∣∣ ∂xf ∣∣
Hs0

∣∣ g ∣∣
Hs−1 +

〈∣∣ ∂xf ∣∣
Hs−1

∣∣ g ∣∣
Hs0

〉
s>s0+1

.

We conclude this section with two corollaries of Lemma A.1, used in particular
in the proof of Theorem 4.4.

Lemma A.3. Let f, ζ ∈ L∞ ⋂
H s̄ with s̄ ≥ 0 and h1 = 1−εζ, with h1(εζ) ≥ h > 0

for any x ∈ R. Then one has∣∣∣∣ 1h1 f
∣∣∣∣
Hs̄

≤ C(h−1, ε
∣∣ζ∣∣

L∞)
(∣∣f ∣∣

Hs̄ + ε
∣∣ζ∣∣

Hs̄

∣∣f ∣∣
L∞

)
.

Proof. We make use of the identity

1

h1
f =

1

1− εζ
f = f +

εζ

1− εζ
f.

Moser’s tame estimates (Lemma A.1) yield∣∣∣∣ 1h1 f
∣∣∣∣
Hs̄

≤ ∣∣f ∣∣
Hs̄ +

∣∣∣∣ εζ

1− εζ
f

∣∣∣∣
Hs̄

�
∣∣f ∣∣

Hs̄ +

∣∣∣∣ εζ

1− εζ

∣∣∣∣
L∞

∣∣f ∣∣
Hs̄ +

∣∣∣∣ εζ

1− εζ

∣∣∣∣
Hs̄

∣∣f ∣∣
L∞ .

The only nontrivial term to estimate is now | εζ
1−εζ |Hs̄ . Using that h1 = 1−εζ ≥ h > 0,

we introduce a function F ∈ C∞(R) such that

F (X) =

{
X

1−X if 1−X ≥ h > 0,

0 if 1−X ≤ 0.
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The function F satisfies the hypotheses of Lemma A.1, and one has∣∣∣∣ εζ

1− εζ

∣∣∣∣
Hs̄

=
∣∣F (εζ)∣∣

Hs̄ ≤ C
(∣∣εζ∣∣

L∞ , h
−1

) ∣∣εζ∣∣
Hs̄ .

The lemma is now straightforward.
Let us apply this lemma to the rigorous estimate of specific expansions.
Lemma A.4. Let f, ζ ∈ L∞([0, T );H s̄) with s̄ ≥ s0 > 1/2 be such that one has

h1 ≡ 1− εζ ≥ h > 0 for any (t, x) ∈ [0, T )× R. Then one has∣∣∣∣ 1h1 f − f

∣∣∣∣
Hs̄

≤ ε C(h−1, ε
∣∣ζ∣∣

Hs̄)
∣∣ζ∣∣

Hs̄

∣∣f ∣∣
Hs̄

and ∣∣∣∣ 1h1 f − (1 + εζ)f

∣∣∣∣
Hs̄

≤ ε2 C(h−1, ε
∣∣ζ∣∣

Hs̄)
∣∣ζ∣∣2

Hs̄

∣∣f ∣∣
Hs̄ .

Proof. Let us first remark that the formal expansions are straightforward:

1

1−X
= 1 +O(X) and

1

1−X
= 1 +X +O(X2) for |X | < 1.

The rigorous estimate is obtained thanks to Lemma A.3, applied to the identities

1

h1
f − f =

εζ

h1
f , and

1

h1
f − (1 + εζ)f =

ε2ζ2

h1
f.

Indeed, one has for s ≥ s0 > 1/2,∣∣∣∣ 1h1 f − f

∣∣∣∣
Hs̄

=

∣∣∣∣ εζh1 f
∣∣∣∣
Hs̄

�
∣∣εζ∣∣

Hs̄

∣∣∣∣ 1h1 f
∣∣∣∣
Hs̄

≤ εC(h−1, ε
∣∣ζ∣∣

Hs̄)
∣∣f ∣∣

Hs̄ ,

where we used Lemmas A.1 and A.3. The second estimate, concerning the quantity
| 1
h1
f − (1 + εζ)f |Hs̄ , is obtained identically.
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