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Abstract
The (Serre–)Green–Naghdi system is a non-hydrostatic model for the 
propagation of surface gravity waves in the shallow-water regime. Recently, 
Favrie and Gavrilyuk proposed in Favrie and Gavrilyuk (2017 Nonlinearity 30 
2718–36) an efficient way of numerically computing approximate solutions 
to the Green–Naghdi system. The approximate solutions are obtained through 
solutions of an augmented quasilinear system of balance laws, depending 
on a parameter. In this work, we provide quantitative estimates showing that 
any sufficiently regular solution to the Green–Naghdi system is the limit of 
solutions to the Favrie–Gavrilyuk system as the parameter goes to infinity, 
provided the initial data of the additional unknowns is well-chosen. The 
problem is therefore a singular limit related to low Mach number limits with 
additional difficulties stemming from the fact that both order-zero and order-
one singular components are involved.

Keywords: water-waves, shallow-water approximation, relaxation system, 
singular limit problem
Mathematics Subject Classification numbers: 35L60, 35Q35, 76B15, 76M45

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Motivation

The (Serre–)Green–Naghdi system arises as a model for the propagation of weakly disper-
sive surface gravity waves. It has been derived many times in the literature, and in particular 
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in [3, 15, 24, 28–30]. More recently [19], it has been rigorously justified as an asymptotic 
model for the so-called water-waves system in the shallow-water regime. It can be seen as 
a second-order model refining the Saint-Venant system so as to take into account dispersive 
effects, and as such has received a fair amount of attention. Let us write down one of the many 
formulations of the Green–Naghdi system. Denoting h(t, x) the depth of the water and u(t, x) 
the layer-averaged horizontal velocity at time t ∈ R and horizontal position x ∈ Dd  (where 
D = R or D = T and d ∈ {1, 2}), the Green–Naghdi system in the flat-bottom situation reads

⎧
⎨

⎩

∂th +∇ · (hu) = 0,

∂tu + g∇h + (u ·∇)u + 1
3 h∇

(
h2 ḧ

)
= 0,

 (1.1)

where g is the gravitational acceleration and denoting ḣ = ∂th + u ·∇h and ̈h = ∂tḣ + u ·∇ḣ.
A difficulty arises when one tries to—numerically or analytically—solve the initial-value 

problem associated with (1.1) as, after using the equation of mass conservation to rewrite ḧ, it 
is found necessary to invert the elliptic operator

T[h] : v !→ hv− 1
3
∇
(
h3∇ · v).

This is only a technical difficulty in the proof of the local well-posedness of the Cauchy 
problem [2, 9, 13, 22], but remains a severe issue for practical numerical simulations, as the 
cost of inverting this operator at each time step can be prohibitive, especially in dimension 
d  =  2. We refer to [21, 25] and references therein for several numerical schemes adapted to the 
Green–Naghdi system. The aforementioned issue is addressed in [10, 20], where the authors 
introduce a new class of models which enjoy the same precision as the original Green–Naghdi 
system—as an asymptotic model for the water-waves system—but for which the elliptic oper-
ator playing the role of T[h] is independent of time. A different direction of investigation is 
proposed in the recent paper by Favrie and Gavrilyuk [11]. By modifying the lagrangian 
associated with the variational formulation of the Green–Naghdi system, the authors derive a 
system of balance laws depending on an augmented set of unknowns and on a free parameter:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂th +∇ · (hu) = 0,
∂tu + g∇h + (u ·∇)u− λ

3 h∇
(η

h (η − h)
)
= 0,

∂tη + u ·∇η = w,
∂tw + u ·∇w = − λ

h2

(
η − h

)
.

 (1.2)

The claim is that in the limit λ→∞, solutions to (1.2) approach solutions to (1.1). Indeed we 
expect, using the fourth and third equations of (1.2):

η = h +O(λ−1 ) and λ
(
η − h

)
= −h2 η̈ = −h2 ḧ +O(λ−1 ),

and we recover (1.1) when plugging the truncated approximations in the second equation of 
(1.2).

The aim of this work is to produce quantitative estimates which allow to rigorously prove 
that the Favrie–Gavrilyuk system (1.2) produces arbitrarily precise approximate solutions to 
the Green–Naghdi system (1.1) on the relevant timescale.

Among other things, our work gives insights to how large λ should be chosen and how ini-
tial data for η and w should be set in order for the corresponding solution to (1.2) to be a valid 
approximation to the solution of the Green–Naghdi system (1.1); and hence to surface gravity 
waves in the shallow-water regime.
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1.2. Main results

The main ingredient in the proof of theorem 1.3 below will be a priori estimates, which need 
to be assessed uniformly with respect to the parameter λ. In order to provide useful results, we 
also need to provide estimates which are uniform with respect to the other parameters of the 
system, and in particular the (small) shallowness parameter, which measures the precision of 
the Green–Naghdi system.

Hence for proper comparison, we start by non-dimensionalizing the systems (1.1) and 
(1.2). A natural choice of scaling in the shallow-water regime1 yields respectively

⎧
⎨

⎩

∂tζ +∇ · (hu) = 0,

∂tu +∇ζ + (u ·∇)u + µ
3 h∇

(
h2 ḧ

)
= 0,

 (1.3)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tζ +∇ · (hu) = 0,
∂tu +∇ζ + (u ·∇)u− λµ

3 h ∇
(η

h (η − h)
)
= 0,

∂tη + u ·∇η = w,
∂tw + u ·∇w = − λ

h2

(
η − h

)
.

 (1.4)

Above, ζ is the dimensionless surface deformation and we will always denote h = 1 + ζ . The 
shallowness parameter µ is the square of the ratio of the typical depth of the layer to the typical 
horizontal wavelength of the wave, and is assumed to be small in the shallow-water regime: 
roughly speaking, regular solutions to the Green–Naghdi system (1.3) approximate corre-
sponding solutions to the so-called water-waves system up to an error of size O(µ2t) on the 
‘quadratic’ time scale i.e. up to a maximal time inversely proportional to the size of the initial 
data; see [19]. We aim at proving that solutions to system (1.4) when λ is large and initial data 
for (η, w) are well-prepared approach solutions to the Green–Naghdi system (1.3), uniformly 
with respect to the parameter µ and on the quadratic time scale.

We give a precise statement of our main results below. We let the reader refer to section 2.1 
for a description of the notations involved.

1 We use the scaled variables

x← x/L ; t← t×
√

gH/L,
and scaled unknowns

u← u/
√

gH ; h← h/H ; ζ ← ζ/H.
The choice is less obvious for the augmented unknowns which have no direct physical interpretation. In view of 
their dimension and the expected behaviour as λ→∞, we set

w← w/
√

gH×(L/H) ; η ← η/H.
Thus we scale w differently from u, because the former represents typically a vertical velocity while the latter is the 
layer-averaged horizontal velocity. As for λ, we set

λ← λ/(gH)×(L/H)2 .

Here again this choice reflects the fact that λ compares with a vertical acceleration, times a vertical length. We 

denote µ
def
= (H/L)2.
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Because system (1.4) is a symmetrizable hyperbolic quasilinear system (as it is checked in 
section 2.3 below), the well-posedness of the corresponding initial-value problem is provided 
by standard theory; see e.g. [5].

Theorem 1.1. Let s ∈ R with s  >  1  +  d/2. Then for any λ,µ ∈ (0,∞) and any 
U0 = (ζ0 , u0 , η0 − 1, w0 ) ∈ Hs(Dd)d+3  satisfying the hyperbolicity condition

h0
def
= 1 + ζ0 ! h⋆ > 0, (1.5)

there exists a unique maximal strong solution U = (ζ, u, η − 1, w) ∈ C0([0, T⋆); Hs(Dd))d+3  
to (1.4 ) with U |t=0 = U0, where T⋆ > 0 is the maximal time of existence. Moreover, one has 
U ∈

⋂⌊s⌋
j=0 C j([0, T⋆); Hs− j(Dd)d+3 ), and either T⋆ =∞ or limt↗T⋆

∣∣U
∣∣
W1,∞(t) =∞.

Solutions to the Favrie–Gavrilyuk system are valuable approximations to the Green–
Naghdi system (in the sense of consistency) as long as several space and time derivatives of 
the solutions are uniformly bounded, as stated below.

Theorem 1.2. Let s ! 2 and M⋆ > 0. There exists C  >  0 such that for any λ,µ ∈ (0,∞), 
T  >  0 and U = (ζ, u, η − 1, w) ∈

⋂2
j=0 C j([0, T); Hs−j(Dd))d+3  strong solution to (1.4 ) satis-

fying h
def
= 1 + ζ > 0 and

sup
t∈[0,T)

(∣∣U
∣∣
Hs +

∣∣∂tU
∣∣
Hs−1 +

∣∣∂ 2
t U

∣∣
Hs−2

)
! M⋆,

one has
⎧
⎨

⎩

∂tζ +∇ · (hu) = 0,

∂tu +∇ζ + (u ·∇)u + µ
3 h∇

(
h2 ḧ

)
= µ

3 h∇r,
 (1.6)

with r = −hη̈(η − h)− h2 (η̈ − ḧ) ∈ C0([0, T⋆); Hs−2 (Dd)) and if one has additionally 
∂ j

t w ∈ L1 (0, T; Hs+1 −j(Dd)) for any j ∈ {0, . . . , 3}, then

∣∣r
∣∣
Hs−2 ! λ−1 C

3∑

j=0

∣∣∂ j
t w

∣∣
Hs+1 −j.

Proof. The formula for r comes from straightforward manipulations on (1.4). By lemma 2.2 
we infer r ∈ C0([0, T⋆); Hs−2 (Dd)) and

∀t∈ [0, T⋆),
∣∣r
∣∣
Hs−2 (t) ! C(M⋆)

2∑

j=0

∣∣∂ j
t (η − h)

∣∣
Hs−j(t).

The desired estimate is deduced, applying lemma 2.2 to the last equation of (1.4). □ 

Of course, there is no reason to hope a priori that the maximal solutions to (1.4) with initial 
data in a given ball of Hs(Dd)d+3—or continuously embedded normed spaces—satisfy the 
estimates of theorem 1.2 on a relevant time scale uniformly with respect to the parameters λ 
(large) and µ (small). The main result of this work is to prove that it is possible to prepare the 
initial data (for η and w) so that such property holds.
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All our results from now on are restricted to the following set of parameters

Sν = {(λ,µ) ∈ (0,∞)2 , λ−1 + µ+ (λµ)−1 ! ν}, (1.7)

where ν  should be thought as a prescribed constant of order of magnitude one. The results are 
valid for any choice of ν > 0, but of course not uniformly as ν →∞. The first two restrictions 
in Sν  are harmless in our framework, but the second one already hints at a possibly non-uniform 
behaviour with respect to small values of µ. Let us further prepare the Favrie–Gavrilyuk system 
through a change of variables which allows to balance the singular terms in (1.4). Introducing

ι
def
= (µλ)1 /2 (η − h) ; κ

def
= µ1 /2 h−1 w, (1.8)

we see that (1.4) is equivalent to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tζ +∇ · (hu) = 0,

∂tu + (u ·∇)u +∇ζ − 1
3 h∇

(
(µλ)1 /2 ι+ ι2

h

)
= 0,

∂tι+ u ·∇ι = λ1 /2 (hκ+ µ1 /2 h∇ · u),
∂t(hκ) + u ·∇(hκ) = −λ1 /2 h−2 ι.

 (1.9)

The following result shows that one can control solutions to (1.9) on a time interval uniform 
with respect to λ (sufficiently large) and µ provided that the initial data is well-prepared.

Theorem 1.3. Let m, s ∈ N with s  >  1  +  d/2, 1 ! m ! s, and h⋆, M⋆
0 , ν > 0 . Set also 

δ⋆ ∈ (0, 1) if m  =  s. There exist ν⋆, T , C0 > 0  such that for any (λ,µ) ∈ Sν  satisfying λµ ! ν⋆, for 
any λ̃ ∈ [1,λµ] and for any maximal strong solution V = (ζ, u, ι,κ) ∈ C0([0, T⋆); Hs(Dd))d+3  
to system (1.9 ) such that h |t=0 = 1 + ζ |t=0 ! h⋆ (provided by theorem 1.1) and satisfying 
additionally

M0
def
=

m∑

j=0

∣∣∂ j
t V

∣∣
Hs−j(0 ) +

s∑

j=m+1

λ̃
m−j

2
∣∣∂ j

t V
∣∣
Hs−j(0 ) ! M⋆

0 , (1.10)

one has T⋆ > (M0T)−1 and for any t∈ [0, (M0T)−1 ],
m∑

j=0

∣∣∂ j
t V

∣∣
Hs−j(t) +

s∑

j=m+1

λ̃
m−j

2
∣∣∂ j

t V
∣∣
Hs−j(t) ! C0 M0 .

If m  =  s, we can withdraw the condition λµ ! ν⋆ and replace it with the sharper

(1 − δ⋆)(λµ)1 /2 ! max

{
|(κh) |t=0 |,

1
2
|(ιh−1 ) |t=0 |

}
.

It is important to notice that the above result holds with any λ̃ ∈ [1,λµ] but not with λ̃ = λ 
uniformly with respect to µ small. If it were the case, then the initial assumption on the high-
order time derivatives of the unknown ( j ! m + 1 in (1.10)) would be irrelevant as, using the 
system of equation (1.9) and product estimates (see lemma 2.2 below), we can estimate high-
order time derivatives of V  from lower-order time derivatives, with a cost of powers of λ1/2:

s∑

j=m+1

λ
m−j

2
∣∣∂ j

t V
∣∣
Hs−j ! C

(
h⋆, ν,

m∑

j=0

∣∣∂ j
t V

∣∣
Hs−j

)
×

m∑

j=0

∣∣∂ j
t V

∣∣
Hs−j.

Vincent Duchêne Nonlinearity 32 (2019) 3772
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In particular, in the strong dispersion regime (µ ≈ 1), the explicit condition
∣∣V |t=0

∣∣
Hs + λ1/2∣∣ι |t=0

∣∣
Hs−1 + λ1/2∣∣κ |t=0 + µ1/2∇ · u |t=0

∣∣
Hs−1 ! M⋆

0

is sufficient (applying theorem 1.3 with λ̃ = λµ ≈ λ and m  =  1) to guarantee the existence 
and uniform control of the corresponding solution—but not its time derivatives—on a time 
interval uniform with respect to λ sufficiently large. In the weak dispersion or shallow-water 
regime (µ≪ 1), the assumption (1.10) in theorem 1.3 is a strong constraint on the initial 
behavior of the solution, and it is natural to ask whether it is possible, for a given initial physi-
cal state defined by ζ |t=0 , u |t=0  and µ > 0, to provide initial data for the additional comp-
onents η |t=0 and w |t=0  such that the corresponding solution to (1.4) satisfies (1.10) uniformly 
with respect to large λ and small µ. We answer positively below.

Theorem 1.4. Let s, m ∈ N, s  >  d/2  +  1, s ! m + 1 and h⋆, M⋆
0 , ν > 0 . There ex-

ists Cm, C′
m > 0  such that for any (λ,µ) ∈ Sν  and any (ζ0 , u0 ) ∈ Hs(Dd)1 +d  such that 

h0 = 1 + ζ0 ! h⋆ > 0 and

M0
def
=

∣∣ζ0
∣∣
Hs +

∣∣u0
∣∣
Hs ! M⋆

0 ,

the following holds. There exists c( j) ∈ Hs(Dd) for j ∈ {1, · · · , m} such that the strong solu-
tion to (1.4 ) with initial data U(m) |t=0 = (ζ0 , u0 , η(m)

0 , w(m)
0 ) where

w(m)
0 =

∑

j odd
1!j!m

λ−( j−1)/2c( j) and η(m)
0 = h0 +

∑

j even
2!j!m

λ−j/2c( j)

 
(1.11)

satisfies

m+ 1∑

j= 0

∣∣∂ j
t U(m)

∣∣
Hs−j(0 ) + λ

m∑

j= 0

∣∣∂ j
t (η

(m) − h(m))
∣∣
Hs−j(0 ) ! Cm M0 . (1.12)

Moreover, we have for any j ∈ {1, · · · , m}
{∣∣c( j)

∣∣
Hs−j + µ j/2

∣∣c( j)
∣∣
Hs ! C′

m M0 , if j is even,∣∣c( j)
∣∣
Hs−j + µ( j− 1 )/2

∣∣c( j)
∣∣
Hs−1 ! C′

m M0 , if j is odd. (1.13)

We can choose c(1) = −h0∇ · u0  and c(2) the unique solution to

t[h0]c(2) = u0 ·∇(∇ · u0)− (∇ · u0)
2 −∆ζ0 −∇ · ((u0 ·∇)u0)

where we define

t[h]ϕ def
= h−3 ϕ− µ

3
∇ ·

(
h−1∇ϕ

)
.

Remark 1.5. The expression for c(2) emerges when solving

(h2 η̈ − h2 ḧ) |t=0 = −λ(η − h) |t=0 − (h2 ḧ) |t=0 = O(λ−1 ).

The operator t[h] is one-to-one and onto (see lemma 2.3 below) if inf h > 0 and is in some 
sense conjugate to T defined above, as one has for any sufficiently regular (h,ϕ, u)

Vincent Duchêne Nonlinearity 32 (2019) 3772
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T[h](h−1∇ϕ) = ∇(h3 t[h]ϕ) and ∇ · (h−1 T[h]u) = t[h](h3∇ · u).

Remark 1.6. A direct application of theorems 1.3 and 1.4 shows that for any sufficiently 
regular initial data (ζ0 , u0 ) satisfying the non-cavitation assumption (1.5), one may associate a 
solution to (1.4) satisfying the estimates of theorem 1.2 uniformly with respect to µ possibly 
small and λ sufficiently large, on the quadratic time scale (i.e. inversely proportional to the 
size of the initial data). Henceforth we produce (ζ, u) satisfying the Green–Naghdi system 
up to a residual of size O(λ−1µ), i.e. approximate solutions in the sense of consistency. Us-
ing energy estimates on the linearized Green–Naghdi system (see [2, 9, 13, 22]), we deduce 
that the difference between such solution and the exact solution to the Green–Naghdi system 
(1.3) with the same initial data is of size O(λ−1µt) on the quadratic time scale. This should be 
compared with the results of the previously mentioned works (and references therein) show-
ing that the solution to the Green–Naghdi system is at a distance O(µ2t) to the solution of the 
full water-waves system with corresponding initial data on the same time scale. Hence the 
Favrie–Gavrilyuk system produces as precise approximate solutions for long gravity waves as 
the Green–Naghdi system itself as soon as λ ! µ−1 and the initial data for (η, w) is suitably 
chosen.

1.3. Outline

The remainder of this work is organized as follows. In section 1.4 we describe and comment 
our results and strategy in the light of relevant references in the literature of singular limit 
problems.

In section 2.1, we describe our notations. Section 2.2 contains technical tools such as prod-
uct estimates in Sobolev spaces and an elliptic estimate on the operator t[h]. We show in 
section  2.3 that the Favrie–Gavrilyuk system is hyperbolic under the usual non-cavitation 
assumption. We exhibit in section 2.4 the symmetric structure of the system upon which our 
results are based.

Section 3 contains the proof of theorem 1.3. Section 4 contains the proof of theorem 1.4. 
Finally, section 5 is dedicated to a summary and concluding remarks.

1.4. Strategy

As aforementioned, the main tool for proving the above results are a priori estimates, which 
should hold uniformly with respect to the parameters λ,µ ∈ Sν . In order to obtain these esti-
mates, we make use of a symmetric structure which is fairly easily deduced from the form-
ulation (1.9). As a matter of fact, we show in section 2.4 below that the system can be written 
(when d  =  2) as

St(V)∂tV + Sx(V)∂xV + Sy(V)∂yV = λ1 /2 JµV + G(V),

where St, Sx, Sy  are smooth functions of V  with values into symmetric matrices, Jµ is a skew-
symmetric constant-coefficient differential operator, and G is a smooth function. Moreover St 
is positive definite in a hyperbolicity domain containing a neighborhood of the origin.

We are obviously looking at a singular limit problem. Such problems, and in particular 
incompressible or low Mach number limits in the context of fluid mechanics, have a very rich 
history, which we shall not recall. We will only let the interested reader refer to, e.g. [1, 14, 27] 
for comprehensive reviews. Due to the non-trivial symmetrizer in front of the time derivative, 
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the linearized system does not appear to be uniformly well-posed in Sobolev spaces as λ→∞ 
since small perturbations of the initial data might cause large changes in solutions. This is a 
noteworthy feature of the incompressible limit of the non-isentropic Euler equations, as stud-
ied in particular in [23]. However, our problem is different in nature as we do not wish to deal 
with large oscillations in time but rather aim at discarding them as spurious products of the 
approximation procedure. Hence we willingly restrict our study to well-prepared initial data, 
and as such our work is more directly related to pioneering works of Browning and Kreiss 
[7], Klainerman and Majda [18], and Schochet [26]. In fact our proof of theorem 1.3 closely 
follows the one of [26]; while the proof of theorem 1.4 is strongly inspired by [7]. However in 
both cases the proof requires significant adaptations in order to take into account the fact that 
the singular operator, Jµ, is not homogeneous of order one.

The most serious novel difficulty stems from the fact that the contribution from order-zero 
terms in Jµ are less well-behaved than order-one contributions, and that the latter are mul-
tiplied by a vanishing prefactor as µ→ 0. This is the reason for the shortcoming described 
below theorem 1.3. We would like to explain now this discrepancy with the more standard 
setting—studied in the previously mentioned references—where Jµ is homogeneous of order 
one. A toy model for the latter situation could be the following:

∂tu =
1
ϵ

h∂xu ; ∂th = 0.

Here u is the singular variable while h is a regular variable, given and independent of time. 
The problem is reduced to a linear problem with variable coefficients, which is readily solv-
able by the methods of characteristics if we assume for instance that h, u are initially regular 
and for any x ∈ R, 0 < h⋆ ! h(x) ! h⋆ <∞. We see that variations of size δ in h produce 
variations of size 1 on u at time t = ϵ/δ. However, the solution and its space derivatives remain 
controlled for all times, uniformly with respect to ϵ small. This behavior is not shared for the 
toy model corresponding to Jµ homogeneous of order zero, namely

∂tu = i
1
ϵ

hu ; ∂th = 0.

The problem is now an ordinary differential equation  in time where the space variable is a 
parameter. The solution u(t, x) = u0 (x) exp(ith(x)/ϵ) strongly oscillates with a different rate 
as h(x) takes different values. Hence for positive times, the solution exhibits small scale oscil-
lations, and space derivatives are not uniformly controlled with respect to the parameter ϵ 
small. If variations of h are of size δ, it is necessary to prepare the initial data u |t=0 = O(ϵm) 
in order to control m space derivatives of the solution at time t = 1/δ. Our situation is roughly 
speaking a combination of the above where the size of µ measures the relative strength of the 
two influences. Based on the necessary properties satisfied by Jµ (in particular lemma 3.4 
below) a toy model could be

∂tu = i
1
ϵ

h(1 − µ∂ 2
x )

1
2 u ; ∂th = 0.

Consistently with theorem 1.3—and following the lines of its proof—the assumption 
u |t=0 = O(µm/2) is sufficient to control m space derivatives of the solution at time t = 1/δ, 
uniformly with respect to ϵ small. We let the reader refer to section 3 for a more detailed 
discussion on the strategy developped in [7] and [26], and the differences of our framework.
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2. Preliminaries

2.1. Notations

The parameter d ∈ {1, 2} denotes the horizontal space dimension, x ∈ Dd , where D = R or 
D = T. If d  =  2, then we denote x = (x, y). We sometimes assume for simplicity that d  =  2, 
the setting d  =  1 being recovered after straightforward simplifications. Idd is the d × d iden-
tity matrix while 0d1 ,d2  is the d1 × d2 null matrix.

The notation a ! b means that a ! C0 b, where C0 is a nonnegative constant whose exact 
expression is of no importance. We denote by C(λ1 ,λ2 , . . . ) a nonnegative constant depending 
on the parameters λ1, λ2,… and whose dependence on the λj is always assumed to be nonde-
creasing. ⌊·⌋ denotes the floor function.

We use standard notations for functional spaces. L2(Dd) is the standard Hilbert space of 
square-integrable functions, associated with the inner-product 

(
f1 , f2

)
L2 =

∫
Dd f1 (x) f2 (x)d x 

and the norm 
∣∣f
∣∣
L2 =

( ∫
Dd | f(x)|2dx

)
1/2. The space L∞(Dd) consists of all essentially 

bounded, Lebesgue-measurable functions f  with the norm 
∣∣f
∣∣
L∞ = ess supx∈Dd | f(x)| <∞. 

We endow the space W1,∞(Dd) = { f, s.t. f ∈ L∞(Dd), ∇f ∈ L∞(Dd)d} with its canonical 
norm. For any real constant s ∈ R, Hs(Dd) denotes the Sobolev space of all tempered dis-
tributions f  with finite norm 

∣∣f
∣∣
Hs =

∣∣(1−∆)s/2f
∣∣
L2. For j ∈ N, I a real interval and X a nor-

med space, C j(I; X) denotes the space of X-valued continuous functions on I with continuous 
derivatives up to the order j . All these norms extend to vector-valued functions by using the 
Euclidean norm

Additionally, we introduce non-standard ‘norms’, denoted with double-bars: ∥∥ ·
∥∥

s,m,λ̃,
∥∥ ·

∥∥
s,m,λ̃,(1 ),

∥∥ ·
∥∥

s,m,λ̃,(2 ) defined in (3.1)–(3.3) and 
∥∥ ·

∥∥
s,j defined in (4.1).

When k = (kx, ky) ∈ Nd is a multi-index, |k| = kx + ky and ∂k = ∂kx
x ∂

ky
y  when d  =  2 (oth-

erwise d  =  1, |k| = k and ∂k = ∂k
x ). For X, Y two closed linear operators (typically of differ-

entiation and pointwise multiplication), we denote [X, Y]def
= XY − YX  the commutator whose 

domain is clear from the context.

2.2. Technical tools

We use mostly without reference the standard continuous Sobolev embedding Hs(Dd) ⊂
L∞(Dd) for s  >  d/2 with

∣∣f
∣∣
L∞ !

∣∣f
∣∣
Hs .

The following product estimate is proved for instance in [5, theorem C.10].

Lemma 2.1. Let f ∈ Hs1(Dd) and g ∈ Hs2(Dd) and s1 , s2 ! s0 ! 0  such that s1 + s2 >  
s0 + d/2. Then fg ∈ Hs0(Dd) and

∣∣fg
∣∣
Hs0

!
∣∣f
∣∣
Hs1

∣∣g
∣∣
Hs2

.

In particular, Hs(Dd) is a Banach algebra as soon as s  >  d/2. We deduce by induction on 
the number of factors the following multilinear product estimate.

Lemma 2.2. Let k ! 2 and fl∈ Hsl(Dd) for l∈ {1, . . . , k}, with sl ! s0 ! 0 and ∑k
l=1 sl > s0 + (k − 1)d/2. Then 

∏
lfl∈ Hs0(Dd) and

Vincent Duchêne Nonlinearity 32 (2019) 3772



3781

∣∣
∏

l

fl
∣∣
Hs0

!
∏

l

∣∣fl
∣∣
Hsl

.

We conclude with a technical result concerning the elliptic operator

t[h] : ϕ !→ h−3 ϕ−µ

3
∇ ·

(
h−1∇ϕ

)
.

Lemma 2.3. Let s  >  1  +  d/2 and ζ ∈ Hs(Dd) be such that 1 + ζ ! h⋆ > 0. Then 
t[h] : H1 → H−1 is one-to-one and onto. Moreover, one has for any ψ ∈ Hk(Dd) with k ∈ N 
such that k ! s− 1,

∣∣t[h]−1 ψ
∣∣
Hk + µ

∣∣t[h]−1 ψ
∣∣
Hk+2 ! C(h−1

⋆ ,
∣∣ζ
∣∣
Hs)

∣∣ψ
∣∣
Hk .

Proof. The existence and uniqueness of ϕ ∈ Hk+2(Dd) such that

t[h]ϕ def
= h−3ϕ− µ

3
∇ · (h−1∇ϕ) = ψ (2.1)

follows from standard elliptic theory, and we focus on the estimates. Testing (2.1) against ϕ 
yields

∣∣ϕ
∣∣2
L2 + µ

∣∣∇ϕ
∣∣2
L2 ! C(h⋆,

∣∣h
∣∣
L∞)

∣∣ϕ
∣∣
L2

∣∣ψ
∣∣
L2 .

Using again (2.1), we find
µ

3
∣∣∆ϕ

∣∣
L2 =

∣∣hψ − h−2 ϕ− µh−1∇h ·∇ϕ
∣∣
L2 ! C(h−1

⋆ ,
∣∣h
∣∣
L∞ ,µ1 /2 ∣∣∇h

∣∣
L∞)

∣∣ψ
∣∣
L2 ,

and the estimate is proved for k  =  0. For 1 ! k ! s− 1, we differentiate (2.1) and find for any 
k such that |k| = k,

t[h]∂kϕ = ∂kψ −[∂k, h−3 ]ϕ+
µ

3
∇ ·[∂k, h−1 ]∇ϕ.

Testing against ∂kϕ, and using lemma 2.2, we have by induction on k
∣∣ϕ
∣∣
Hk + µ1 /2 ∣∣ϕ

∣∣
Hk+1 ! C(h−1

⋆ ,
∣∣ζ
∣∣
Hs)

∣∣ψ
∣∣
Hk

and the result follows by using once again the identity and lemma 2.2. □ 

2.3. Hyperbolicity of the Favrie–Gavrilyuk system

System (1.4) is a quasilinear system of balance laws. It can be written under the matricial form 
(in dimension d  =  2) with U def

= (ζ, u, η, w):

∂tU + Ax(U)∂xU + Ay(U)∂yU = F(U).

Its principal symbol L def
= iτ + iξxAx(U) + iξyAy(U) is
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L = i

⎛

⎜⎜⎜⎝

Θ hξ⊤

αξ ΘIdd βξ

Θ

Θ

⎞

⎟⎟⎟⎠

where ξ = (ξx, ξy)⊤, α = 1 + µλ η2

3h3, β = µλ
3h (1−

2η
h ) and Θ = τ + uxξx + uyξy. One imme-

diately sees that Θ = 0 solves the characteristic equation, det L = 0, with multiplicity d  +  1 
and corresponding eigenvectors

(0, ξy,−ξx, 0, 0) ; (β, 0, 0,−α, 0) ; (0, 0, 0, 0, 1 ).

The first eigenvector corresponds to the evolution of the vorticity ω = curlu. The two other 
components are consistent with the fact that the phase velocity of the linearized Green–Naghdi 
system vanishes in the high-frequency limit (see [11] for a comparative analysis of the disper-
sion relation of the Green–Naghdi and Favrie–Gavrilyuk systems). There are two additional 
values of Θ solving det L = 0, namely Θ = ±

√
αh|ξ| with corresponding eigenvectors

(∓
√

h|ξ|,
√
αξx,
√
αξy, 0, 0).

Hence we see that the system is strongly hyperbolic as soon as one restricts to U = (ζ, u, η, w) 
satisfying inf(1 + ζ) ! h⋆ > 0, as its principal symbol is smoothly diagonalizable. As a mat-
ter of fact the system is Friedrichs-symmetrizable, since one can exhibit a symmetrizer, S, 
such that SAx and SAy are symmetric:

S
def
=

⎛

⎜⎜⎝

α β

hIdd

β γ

1

⎞

⎟⎟⎠

where γ  is taken large enough in order to ensure that S is definite positive as soon as 
inf h ! h⋆ > 0. From this, standard results yield theorem 1.1; see [5].

2.4. Symmetric structure of the Favrie–Gavrilyuk system

We can write the Favrie–Gavrilyuk system with variables V = (ζ, u, ι,κ), namely (1.9), in a 
symmetric matricial form:

St(V)
(
∂tV + (u ·∇)V

)
+ Sx(V)∂xV + Sy(V)∂yV = λ1/2JµV + G(V)

where

St
def
=

⎛

⎜⎜⎜⎜⎝

3αβ
3hβIdd

h−1 −κh2

(λµ)1/2

−κh2

(λµ)1/2 h3

⎞

⎟⎟⎟⎟⎠
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and

Sxξx + Syξy =

⎛

⎜⎜⎜⎜⎝

0 3 hαβξ⊤

3 hαβξ 0d,d
κ2 h2

(λµ)1 /2 ξ

κ2 h2

(λµ)1 /2 ξ
⊤ 0

0

⎞

⎟⎟⎟⎟⎠

with (misusing notation with the preceding section) α = 1 + ι2

3h2 , β =
1−κ2h2

λµ

1+ 2ι
(λµ)1/2h

, and

G(V) =

⎛

⎜⎜⎜⎝

0
0

µ−1 /2 h−1 κι

−µ−1 /2 h3 κ2

⎞

⎟⎟⎟⎠
.

3. Large time well-posedness

In this section, we provide uniform estimates satisfied by well-prepared strong solutions 
of the Favrie–Gavrilyuk system (1.4), which yield the large time well-posedness result 
of theorem 1.3. In the spirit of [26], we define for m, s ∈ N, 1 ! m ! s, λ̃ ∈ (0,+∞) and 
V ∈

⋂s
j=0 C j([0, T]; Hs−j(Dd)d+3 )

∥∥V
∥∥2

s,m,λ̃
def
=

m∑

j=0

∣∣∂ j
t V

∣∣2
Hs−j+

s∑

j=m+1

λ̃m−j∣∣∂ j
t V

∣∣2
Hs−j, (3.1)

∥∥V
∥∥2

s,m,λ̃,(1 )
def
=

m−1∑

j= 0

s−j∑

|k|= 0

(
St(V)∂ j

t ∂
kV , ∂ j

t ∂
kV

)
L2

+
s∑

j= m

λ̃m−j(St(V)∂ j
t V , ∂ j

t V
)

L2 ,

 (3.2)

∥∥V
∥∥2

s,m,λ̃,(2 )
def
=

s−1∑

j= m

s−j∑

|k|= 1

λ̃m−j∣∣∂ j
t ∂

kV
∣∣2
L2 . (3.3)

By convention 
∥∥V

∥∥
s,m,λ̃,(2 ) = 0  if m  =  s. Of course the notation in (3.2) and (3.3) is abusive 

as the right-hand side does not define a norm. We recall that if V ∈ C0([0, T]; Hs(Dd)d+3 ) is a 
strong solutions to (1.9) and s > 1 + d/2, then we deduce V ∈

⋂s
j=0 C j([0, T]; Hs−j(Dd)d+3 ), 

and the above is well-defined and finite.
Before moving on to the statements of the estimates, their proof and their use in the proof 

of theorem 1.3, we would like to motivate them. As said above, the proof follows very closely 
the one provided in [26]. We would like to recall this proof, so as to point out where novel 
difficulties due to our different setting need to be addressed. Recall (see section 2.4) that our 
system, (1.9), takes the form

St(V)∂tV + Sx(V)∂xV + Sy(V)∂yV = λ1 /2 JµV + G(V), (3.4)

where St, Sx, Sy  are smooth functions of V  with values into symmetric matrices, Jµ is skew-
symmetric and constant-coefficient, and G is a smooth function. The main difference with the 

Vincent Duchêne Nonlinearity 32 (2019) 3772



3784

framework of [26] is that in our case, Jµ is not homogeneous of order one, but contains an 
order-zero additional component, and depends on a second parameter µ.

Following the standard strategy for hyperbolic quasilinear systems (which eventually yields 
theorem 1.1), we first seek a differential inequality for the ‘energy’ of the system, which after 
integration in time yields an a priori control of the energy for positive times. Thanks to the 
symmetric structure of the equation, it is immediate to obtain such an estimate, uniformly with 
respect to the parameters (λ,µ) ∈ Sν , by testing the system against V . However this estimate 
relies on the a priori control of the solution itself in L∞ norm, as well as one derivative with 
respect to space or time. In other words we have

d
d t
(
St(V)V , V

)
L2 ! C(

∣∣V
∣∣
L∞ ,

∣∣∂tV
∣∣
L∞ ,

∣∣∂xV
∣∣
L∞ ,

∣∣∂yV
∣∣
L∞)

∣∣V
∣∣2
L2 .

In view of obtaining a self-contained energy estimate, the standard strategy consists in dif-
ferentiating the system with respect to space, and testing against derivatives of the unknown. 
Thanks to the regularizing properties of commutators, and using the fact that Jµ commutes 
with space derivatives, one deduces for s  >  1  +  d/2 a uniform differential inequality of the 
form

d
d t

⎛

⎝
s∑

|k|=0

(
St(V)∂kV , ∂kV

)
L2

⎞

⎠ ! C(
∣∣∂tV

∣∣
Hs−1 ,

∣∣V
∣∣
Hs).

For standard (non-singular) quasilinear systems, that is setting Jµ ≡ 0 in (3.4), the above 
estimate is sufficient as we have the control

∣∣∂tV
∣∣
Hs−1 ! C(

∣∣V
∣∣
Hs) (3.5)

stemming from the fact that V  satisfies system (3.4), and hence the differential inequality, by 
Gronwall’s lemma and provided that St(V) is positive definite, provides an a priori control 
on 

∣∣V
∣∣
Hs. We express the above strategy through the cartoon in figure 1. However, the argu-

ment is not useful in our framework as (3.5) is not uniform with respect to λ≫ 1 due to the 
contribution from Jµ.

The first strategy that one may have (which is the one developed in [7]) would consist in 
controlling time derivatives of the unknown through energy estimates as above: differentiating 

Figure 1. Sketch of the different strategies for a priori estimates. (a) Standard. (b) 
Browning and Kreiss [7]. (c) Schochet [26] Green dots represent space and time 
derivatives of solutions controlled through energy estimates. Red hexagons represent 
additional terms whose control is inferred by the system of equations.

Vincent Duchêne Nonlinearity 32 (2019) 3772



3785

the system with respect to time as well as with space and using that Jµ commutes with space 
and time derivatives, we obtain (notice we set m  =  s and hence λ̃ is irrelevant)

d
d t
∥∥V

∥∥2
s,s,λ̃,(1 ) ! C(

∥∥V
∥∥

s,s,λ̃). (3.6)

Using that 
∥∥V

∥∥
s,s,λ̃,(1 ) ≈

∥∥V
∥∥

s,s,λ̃ if St(V) is positive definite, we have indeed a self-contained 
energy inequality, which can be integrated in time to offer a valuable uniform a priori estimate 
for the solution and derivatives. This is represented in figure 1(b). Notice however that the esti-
mate which is propagated for positive times must of course be satisfied initially: the a priori 
control of 

∥∥V |t=0

∥∥
s,s,λ̃ is a very strong constraint on the initial data since m  =  s.

The strategy in [26] is more subtle. The first step consists in remarking that, by using energy 
estimates, we may obtain a uniform energy inequality for time derivatives of the unknowns, of 
the form (notice we have now m  =  1 and we set λ̃ ≥ 1)

d
d t
∥∥V

∥∥2
s,1,λ̃,(1) ! C(

∥∥V
∥∥

s,1,λ̃). (3.7)

Indeed, it suffices to ensure that only one time derivative of the initial data is uniformly con-
trolled, so that we can take advantage of a gain of a factor λ̃−1/2 as soon as time derivatives are 
distributed. However, 

∥∥V
∥∥

s,1,λ̃,(1) ≈
∥∥V

∥∥
s,1,λ̃ does not hold, that is we still need to control the 

contribution of terms involving time and space derivatives of the unknowns. To this aim we 
do not use energy estimates (they fail due to the lack of uniform estimate for 

∣∣[∂ j
t∂

k, St]∂tV
∣∣
L2  

when j ̸= 0 and k ̸= 0) but rather directly control the remaining components with respect to 
the former:

∥∥V
∥∥

s,1,λ̃,(2) ! C(
∥∥V

∥∥
s,1,λ̃,(1)) (3.8)

and (under hyperbolicity-type conditions)
∥∥V

∥∥
s,1,λ̃,(1) +

∥∥V
∥∥

s,1,λ̃,(2 ) ≈
∥∥V

∥∥
s,1,λ̃. (3.9)

This is represented in figure 1(c). We cannot infer (3.8) from a simple interpolation uniformly 
with respect to λ̃≫ 1, but rather will deduce it from system (3.4). This is where the precise 
properties of Jµ come into play, and this is where our results differ from the ones in [26]. 
Indeed, when Jµ is a skew-symmetric differential operator, constant-coefficient and homoge-
neous of order one, we can decompose the (frequency) space as the direct sum of the kernel 
and the characteristic space associated with non-trival eigenvalues of its symbol. Controlling 
the projection of V  onto the kernel (the ‘regular component’) is obtained as in (3.5), but apply-
ing first the projection to the system onto the kernel, and hence withdrawing the non-uniformly 
bounded contributions. One controls the other component of V  (the ‘singular component’) in 
the opposite direction, projecting the system onto the singular subspace and using that the 
restriction of Jµ to the singular subspace is invertible, and that the inverse is a regularizing 
operator of order  −1 in Sobolev spaces. While the above properties are still true in our setting 
where Jµ is a non-homogeneous Fourier multiplier, the inverse on the singular subspace is not 
uniformly bounded with respect to the parameter µ≪ 1 (see lemma 3.4 below). This is easily 
understood by setting µ = 0, in which case Jµ is an order-zero operator, and hence the inverse 
cannot be regularizing; and this is the reason why we need to restrict to λ̃ ∈ [ν⋆,λµ] in order 
to ensure that (3.8) holds uniformly.

The parameter m ∈ {1, . . . , s} allows to somehow ‘interpolate’ between the two strategies 
of [7] and [26], and allows some flexibility on the assumption on the initial data.
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Let us now present our results. Proposition 3.1 corresponds to (3.9), while proposition 3.2 
corresponds to (3.6) and (3.7) and proposition 3.3 corresponds to (3.8).

In this section, we fix λ,µ ∈ (0,+∞) and assume for simplicity that

λ ! 1 ; µ " 1 ; λµ ! 1.

Hence (λ,µ) ∈ S1 , recalling notation (1.7); the only change in the generally case (λ,µ) ∈ Sν  
with ν > 0 is that all constants then depend on the parameter ν .

Proposition 3.1. Let s ∈ N with s  >  1  +  d/2 and h⋆, h⋆ > 0 , δ⋆ ∈ (0, 1). There exists  
C1 = C(h−1

⋆ , δ−1
⋆ , h⋆) such that for any strong solution to (1.9 ), V = (ζ, u, ι,κ) ∈

C0([0, T]; Hs(Dd)d+3 ) satisfying, uniformly on [0, T]× Dd , h def
= 1 + ζ ∈ [h⋆, h⋆],

h|κ| ! (1 − δ⋆)(λµ)1 /2 and 2 h−1 |ι| ! (1 − δ⋆)(λµ)1 /2 , (3.10)

for any m ∈ N such that 1 ! m ! s and for any λ̃ ∈ (0,+∞), one has for any t∈ [0, T]

1
C1

∥∥V
∥∥

s,m,λ̃ !
∥∥V

∥∥
s,m,λ̃,(1 ) +

∥∥V
∥∥

s,m,λ̃,(2 ) ! C1
∥∥V

∥∥
s,m,λ̃ (3.11)

Proposition 3.2. Let s ∈ N with s  >  1  +  d/2 and h⋆, M > 0  and δ⋆ ∈ (0, 1).  
There exists C2 = C(h−1

⋆ , δ−1
⋆ , M) such that for any strong solution to (1.9 ), 

V = (ζ, u, ι,κ) ∈ C0([0, T]; Hs+1 (Dd)d+3 ) satisfying the assumptions of proposition 3.1 uni-
formly on [0, T]× Dd  and supt∈[0,T]

∥∥V
∥∥

s,m,λ̃ ! M , for some m ∈ N such that 1 ! m ! s and 
for some λ̃ ∈ [1,+∞), one has for any t∈ [0, T]

d
d t
∥∥V

∥∥2
s,m,λ̃,(1 ) ! C2

∥∥V
∥∥3

s,m,λ̃. (3.12)

Proposition 3.3. Let s ∈ N with s  >  1  +  d/2 and h⋆, M, M(1 ) > 0 . There exists 
ν⋆ = C(h−1

⋆ , M) > 0  and C3 = C(h−1
⋆ , M(1 )) such that for any strong solution to (1.9 ), 

V = (ζ, u, ι,κ) ∈ C0([0, T]; Hs+1 (Dd)d+3 ) satisfying h = 1 + ζ ! h⋆ > 0 uniformly on 
[0, T]× Dd , supt∈[0,T]

∥∥V
∥∥

s,m,λ̃ ! M , supt∈[0,T]
∥∥V

∥∥
s,m,λ̃,(1 ) ! M(1 ), for some m ∈ N such that 

1 ! m ! s and some λ̃ such that λµ ! λ̃ ! ν⋆, one has for any t∈ [0, T]

∥∥V
∥∥

s,m,λ̃,(2 ) ! C3
∥∥V

∥∥
s,m,λ̃,(1 ). (3.13)

The proof of proposition 3.1 is an exercise using the explicit formula for St given in sec-
tion 2.4. We postpone the proof of propositions 3.2 and 3.3 to sections 3.2 and 3.3 (respec-
tively), and complete the proof of theorem 1.3 below.

3.1. Proof of theorem 1.3

Let us first assume that the initial data V0 ∈ Hs+1(Dd), so that by theorem 1.1—and lemma 2.2 
to handle the nonlinear change of variables (1.8)—we have
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V = (ζ, u, ι,κ) ∈
s⋂

j=0

C j+1 ([0, T⋆); Hs−j(Dd)d+3 )

and hence all the ‘norms’ below are well-defined and differentiable on t∈ [0, T⋆). We fix 
m ∈ N with 1 ! m ! s, denote M(1 )

def
=

∥∥V
∥∥

s,m,λ̃,(1 )(0 ) and

T♯ def
= sup

{
t! 0 such that

∥∥V
∥∥

s,m,λ̃,(1 )(t) " 2 M(1 ) and

∀x ∈ Dd, h⋆/2 " 1 + ζ(t, x) " 2
∣∣h(0, ·)

∣∣
L∞

}
.

By a continuity argument, we have that T♯ > 0. In what follows, we denote M (defined pre-
cisely later on) such that

sup
t∈[0,T♯]

∥∥V
∥∥

s,m,λ̃ ! M.

Propositions 3.1–3.3 yield ν⋆ = C(2 h−1
⋆ , M) > 0  such that for any λ̃ such that λµ ! λ̃ ! ν⋆, 

(3.10) holds with δ⋆ = 1/2 and one has for any t∈ [0, T♯]:
∥∥V

∥∥
s,m,λ̃ ! C0

∥∥V
∥∥

s,m,λ̃,(1 ),∥∥V
∥∥

s,m,λ̃,(1 ) ! C1
∥∥V

∥∥
s,m,λ̃

with C1 = C(2h−1
⋆ , 2

∣∣h(0, ·)
∣∣
L∞), C3 = C(2h−1

⋆ , 2M(1)), C0 = C1(1 + C3); and

d
d t
∥∥V

∥∥2
s,m,λ̃,(1 ) ! C2 C3

0
∥∥V

∥∥3
s,m,λ̃,(1 )

with C2 = C(2 h−1
⋆ , M), from which we deduce

∥∥V
∥∥

s,m,λ̃,(1 ) ! M(1 ) exp(M(1 )C2 C3
0 t).

At time t  =  0, we have 
∣∣h
∣∣
L∞(0) ! M⋆

0  and M(1) ! C1M⋆
0  and we may set above 

M = 2 C0 M(1 ) ! 2 C0 C1 M⋆
0 = M⋆

0 C(h−1
⋆ , M⋆

0 ). We also have by the continuous Sobolev 
embedding Hs−1 ⊂ L∞ that there exists cs  >  0 such that for any t∈ [0, T♯],

1 + ζ(t, x) = 1 + ζ(0, x) +
∫ t

0
∂tζ(s, x)d s ∈ [h⋆ − Mcst,

∣∣h(0, ·)
∣∣
L∞ + Mcst].

Hence, we deduce by continuity and from the above that T⋆ > T♯ ! (M(1)T)−1 with 
T = sup{4 C0 csh−1

⋆ , C2 C3
0 / ln 2 } = C(h−1

⋆ , M(1 )), which completes the proof when the initial 
data V0 ∈ Hs+1(Dd). The general case V0 ∈ Hs(Dd) is deduced by a standard regularization 
and compactness argument; see for instance [26, pp 1631–1632].

The improved result in the setting m  =  s is proved in the same way, using that propo-
sitions 3.1 and 3.2 alone are sufficient to have the necessary estimates and that the initial 
assumption (3.10) propagates (replacing δ⋆ with δ⋆/2) on the quadratic time scale since ∣∣V(t)− V(0)

∣∣
L∞ ! t

∣∣∂tV
∣∣
L∞ " Mcst.

3.2. Proof of proposition 3.2

Here and in the following, we denote V = (ζ, u, ι,κ) ∈ C0([0, T]; Hs+1 (Dd)) ∩ C 1 ([0, T]; Hs(Dd)) 
a strong solution to (1.9) satisfying h = 1 + ζ ! h⋆ > 0. By applying iteratively the equation, 
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one has ∂ j
t V ∈ C 1 ([0, T]; Hs−j(Dd)) and hence all the terms below are well-defined and continu-

ous with respect to time. Recall (see section 2.4) that (1.9) has the following form when d = 2:

St(V)∂tV + Sx(V)∂xV + Sy(V)∂yV = λ1 /2 JµV + G(V), (3.14)

where St, Sx, Sy  are smooth functions of V  with values into symmetric matrices (we sim-
ply denote St, Sx, Sy  for St(V), Sx(V), Sy(V) for the sake of conciseness below), Jµ is skew-
symmetric, and G is a smooth function. We prove below estimate (3.12) by standard energy 
method, differentiating (3.14) and testing against derivatives of V .

By testing (3.14) against V  and using the symmetry of St, Sx, Sy  and the skew-symmetry 
of Jµ, we find

1
2

d
d t
(
StV , V

)
L2 =

1
2
(
[∂t, St]V , V

)
L2 +

1
2
(
[∂x, Sx]V , V

)
L2 +

1
2
(
[∂y, Sy]V , V

)
L2

+
(
G(V), V

)
L2 .

It follows immediately by continuous Sobolev embedding Hs−1 ⊂ L∞ for any s  >  1  +  d/2 
that

1
2

d
d t
(
StV , V

)
L2 ! C(h−1

⋆ ,
∣∣V

∣∣
Hs)

(∣∣∂tV
∣∣
Hs−1 +

∣∣V
∣∣
Hs + µ−1 /2 ∣∣κ

∣∣
L∞

)∣∣V
∣∣2
L2 .

We now control space derivatives of the solution. Given k = (kx, ky) such that |k| ! s, we 
apply ∂k = ∂kx

x ∂
ky
y  to (3.14) and test against ∂kV . Because Jµ commutes with space deriva-

tives, we have

1
2

d
d t
(
St∂

kV , ∂kV
)

L2 =
1
2
((
[∂t, St] + [∂x, Sx] + [∂y, Sy]

)
∂kV , ∂kV

)
L2

+
(
[∂k, St]∂tV +[∂k, Sx]∂xV +[∂k, Sy]∂yV , ∂kV

)
L2 +

(
∂kG(V), ∂kV

)
L2 .

The first component is estimated as above and we have
∣∣[∂t, St]∂

kV + [∂x, Sx]∂
kV + [∂y, Sy]∂

kV
∣∣
L2

! C(h−1
⋆ ,

∣∣V
∣∣
Hs)

(∣∣∂tV
∣∣
Hs−1 +

∣∣V
∣∣
Hs

)∣∣∂kV
∣∣
L2 .

Using lemma 2.2, we find
∣∣[∂k, St]∂tV

∣∣
L2 ! C(h−1

⋆ ,
∣∣V

∣∣
Hs)

∣∣V
∣∣
Hs

∣∣∂tV
∣∣
Hs−1 ,

∣∣[∂k, Sx]∂xV
∣∣
L2 +

∣∣[∂k, Sy]∂yV
∣∣
L2 ! C(h−1

⋆ ,
∣∣V

∣∣
Hs)

∣∣V
∣∣2
Hs ,

∣∣∂kG(V)
∣∣
L2 ! C(h−1

⋆ ,
∣∣V

∣∣
Hs)

(
µ−1 /2 ∣∣ι

∣∣
Hs−1 + µ−1 /2 ∣∣κ

∣∣
Hs−1

)∣∣V
∣∣
Hs .

Notice that by using the last two equations of (1.9) and since λµ ! 1, we have

µ−1 /2 ∣∣ι
∣∣
Hs−1 + µ−1 /2 ∣∣κ

∣∣
Hs−1 ! C(h−1

⋆ ,
∣∣V

∣∣
Hs)(

∣∣∂tV
∣∣
Hs−1 +

∣∣V
∣∣
Hs).

Altogether, and applying Cauchy–Schwarz inequality, we proved

d
d t
(
St∂

kV , ∂kV
)

L2 ! C(h−1
⋆ ,

∥∥V
∥∥

s,1,λ̃)
∥∥V

∥∥3
s,1,λ̃.

The control of the first m  −  1 time derivatives of the solution is identical, using that m  
time derivatives are uniformly controlled by 

∥∥V
∥∥

s,m,λ̃; hence we have
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m−1∑

j=0

s−j∑

|k|=0

d
d t
(
St∂

j
t ∂

kV , ∂ j
t ∂

kV
)

L2 ! C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃)
∥∥V

∥∥3
s,m,λ̃.

Let us now control the time derivatives for j ! m. Proceeding as above, we have

1
2

d
d t
(
St∂

j
tV , ∂ j

tV
)

L2 =
1
2
(
[∂t, St]∂

j
tV +[∂x, Sx]∂

j
tV +[∂y, Sy]∂

j
tV , ∂ j

tV
)

L2

+
(
[∂ j

t, St]∂tV +[∂ j
t, Sx]∂xV +[∂ j

t, Sy]∂yV , ∂ j
tV

)
L2 +

(
∂ j

tG(V), ∂ j
tV

)
L2 .

The first terms of the right-hand side are estimated as above:
∣∣[∂t, St]∂

j
t V + [∂x, Sx]∂

j
t V + [∂y, Sy]∂

j
t V

∣∣
L2

! C(h−1
⋆ ,

∣∣V
∣∣
Hs)

(∣∣∂tV
∣∣
Hs−1 +

∣∣V
∣∣
Hs

)∣∣∂ j
t V

∣∣
L2 .

The other terms require the use of lemma 2.2 and to pay attention to powers of λ̃. Taking 
advantage of a gain of a factor λ̃−m/2 as soon as time derivatives are distributed, we find that 
for any λ̃ ! 1, and any j ! m ! 1,

λ̃
m−j

2
∣∣[∂ j

t , St]∂tV + [∂ j
t , Sx]∂xV + [∂ j

t , Sy]∂yV
∣∣
L2 ! C(h−1

⋆ ,
∥∥V

∥∥
s,m,λ̃)

∥∥V
∥∥2

s,m,λ̃.

Finally, one obtains similarly as above

λ̃
m−j

2
∣∣∂ j

t G(V)
∣∣
L2 ! C(h−1

⋆ ,
∥∥V

∥∥
s,m,λ̃)µ

−1/2 (∥∥κ
∥∥

s−1,m,λ̃ +
∥∥ι
∥∥

s−1,m,λ̃)
∥∥V

∥∥
s,m,λ̃

! C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃)
∥∥V

∥∥
s,m,λ̃.

Altogether, we proved

d
d t
(
St∂

j
t V , ∂ j

t V
)

L2 ! C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃)
∥∥V

∥∥3
s,m,λ̃,

for any j ∈ {m, . . . , s}. This completes the proof of proposition 3.2.

3.3. Proof of proposition 3.3

This section is dedicated to the proof of proposition 3.3. Contrarily to proposition 3.2, we shall 
rely strongly on properties of Jµ. Recall our system is of the form (3.14) with

Jµ =

⎛

⎜⎜⎜⎝

0 01,d

0d,1 0d,d µ1/2∇
µ1/2∇⊤ 0 1

−1 0

⎞

⎟⎟⎟⎠
.

We introduce Πreg and Πsing whose symbols are the projections onto the kernel and the eigens-
pace associated with non-zero eigenvalues of the symbol of Jµ:

Πreg def
=

⎛

⎜⎜⎜⎜⎝

1 01,d 0 0

0d,1 Idd +
µ∇∇⊤

1−µ∆ 0d,1
µ1/2∇
1−µ∆

0 01,d 0 0

0 −µ1/2∇⊤

1−µ∆ 0 −µ∆
1−µ∆

⎞

⎟⎟⎟⎟⎠
,
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and

Πsing def
=

⎛

⎜⎜⎜⎜⎝

0 01,d 0 0

0d,1 −µ∇∇⊤

1−µ∆ 0d,1 −µ1/2 ∇
1−µ∆

0 01,d 1 0

0 µ1/2 ∇⊤

1−µ∆ 0 1
1−µ∆

⎞

⎟⎟⎟⎟⎠
.

By definition, we have the following properties

(Πsing )2 = Πsing , (Πreg )2 = Πreg

Πsing +Πreg = Idd+3, Πsing Πreg = 0d+3,d+3

Πsing Jµ = Jµ Πsing = Jµ, Πreg Jµ = Jµ Πreg = 0d+3,d+3.

Thanks to the skew-symmetry of Jµ and the property that the number of non-zero eigenvalues 
of its symbol does not depend on the (non-zero) frequency (there are always two non-zero 
eigenvalues and the kernel dimension is d  +  1), we have that Πsing and Πreg are bounded sym-
metric operators acting on the Hilbert space L2(Dd)d+3: for any U, V ∈ L2 (Dd)d+3 ,

(
Π

sing
reg U, V

)
L2 =

(
U,Π

sing
reg V

)
L2 and

∣∣V
∣∣2
L2 =

∣∣Πreg V
∣∣2
L2 +

∣∣Πsing V
∣∣2
L2 .

In the following, we denote V reg def
= Πreg V , Vsing def

= Πsing V . Using that Πsing and Πreg com-
mute with space and time derivatives, we deduce from the above that

∥∥V
∥∥2

s,m,λ̃,(2 ) !
s−1∑

j= m

λ̃m−j∣∣∂ j
t V reg ∣∣2

Hs−j+ λ̃m−j∣∣∂ j
t Vsing ∣∣2

Hs−j.

We provide in the following sections estimates for

Nreg
j,k,m,λ̃

def
= λ̃

m−j
2
∣∣∂ j

tV reg ∣∣
Hk and Nsing

j,k,m,λ̃
def
= λ̃

m−j
2
∣∣∂ j

tVsing ∣∣
Hk .

The main tool for estimating Nsing
m,k,j,λ̃

 is that, when restricting to the singular subspace, Jµ is 
a homeomorphism from Hk to Hk−1.

Lemma 3.4. Let k ∈ R and U ∈ Hk−1(Dd)d+3 such that U = ΠsingU . Then there exists a 
unique V ∈ Hk(Dd)d+3 such that V = ΠsingV  and U = JµV . Moreover, one has V = −Jµ

1−µ∆U  
and in particular there exists a universal constant CJµ such that

∣∣V
∣∣
Hk ! CJµµ

−1 /2 ∣∣U
∣∣
Hk−1 .

3.3.1. Estimate of the singular contribution, Nsing
j ,k ,m,λ̃

. Differentiating with time the system 

(3.14), and projecting onto the singular subspace yields the identity for any j ∈ N:

Πsing ∂ j
t (St(V)∂tV + Sx(V)∂xV + Sy(V)∂yV − G(V)) = λ1 /2 Πsing JµΠsing ∂ j

tV .

By distributing the time derivatives, paying attention to powers of λ̃ and using lemma 2.2, we 
find that for any 0 ! j ! s and k ∈ N such that k ! s− j:
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λ̃
m−j

2
∣∣∂ j

t
(
St(V)∂tV

)∣∣
Hk−1 ! C(h−1

⋆ ,
∣∣V

∣∣
L∞)λ̃

m−j
2
∣∣∂ j+1

t V
∣∣
Hk−1

+ C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃)
∥∥V

∥∥2
s,m,λ̃.

Similarly,

λ̃
m−j

2
∣∣∂ j

t
(
Sx(V)∂xV

)∣∣
Hk−1 ! C(h−1

⋆ ,
∣∣V

∣∣
L∞)λ̃

m−j
2
∣∣∂ j

t V
∣∣
Hk

+ C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃)
∥∥V

∥∥2
s,m,λ̃.

Finally,

λ̃
m−j

2
∣∣∂ j

t G(V)
∣∣
Hk−1 ! C(h−1

⋆ ,
∥∥V

∥∥
s,m,λ̃)µ

−1/2 (∥∥κ
∥∥

s−1,m,λ̃ +
∥∥ι
∥∥

s−1,m,λ̃

)∥∥V
∥∥

s,m,λ̃

! C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃)
∥∥V

∥∥2
s,m,λ̃.

Altogether and using lemma 3.4 we deduce

Nsing
j,k,m,λ̃

! CJµ(λµ)
− 1

2 C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃,(1))
(
λ̃

1
2 Nsing

j+ 1,k−1,m,λ̃
+ λ̃

1
2 Nreg

j+ 1,k−1,m,λ̃

)

+CJµ(λµ)
− 1

2 C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃)
∥∥V

∥∥
s,m,λ̃,

 (3.15)
where we recall that CJµ > 0 is defined in lemma 3.4.

3.3.2. Estimate of the regular component N reg
j ,k ,m,λ. Now we project system (3.14) onto the 

regular subspace and apply the differential operator ∂k∂ j−1
t  for 1 ! m ! j ! s and k ∈ Nd 

such that |k| ! s− j . Testing against Πreg∂k∂ j
tV  yields

(
∂k∂ j−1

t (St∂tV + Sx∂xV + Sy∂yV − G(V)) ,Πreg ∂k∂ j
tV

)
L2 = 0,

which we decompose as follows:
(
StΠ

reg ∂k∂ j
tV ,Πreg ∂k∂ j

tV
)

L2 +
(
StΠ

sing ∂k∂ j
tV ,Πreg ∂k∂ j

tV
)

L2

+
(
∂k∂ j−1

t
(
Sx∂xV + Sy∂yV

)
,Πreg ∂k∂ j

tV
)

L2

+
(
∂k[∂ j−1

t , St]∂tV ,Πreg ∂k∂ j
tV

)
L2

+
(
[∂k, St]∂

j
tV ,Πreg ∂k∂ j

tV
)

L2

+
(
∂k∂ j−1

t G(V),Πreg ∂k∂ j
tV

)
L2 = 0.

Under the assumptions of proposition 3.1, the first contribution gives us the desired control

|Nreg
j,k,m,λ̃

|2 ! λ̃m−jC(h−1
⋆ , δ−1

⋆ ,
∣∣V

∣∣
L∞)

k∑

|k|=0

(
StΠ

reg ∂k∂ j
tV ,Πreg ∂k∂ j

tV
)

L2 ,

and the second contribution is estimated through

λ̃
m−j

2
∣∣StΠ

sing ∂k∂ j
tV

∣∣
L2 ! C(h−1

⋆ ,
∣∣V

∣∣
L∞)Nsing

j,k,m,λ̃
.

As for the second line, we estimate differently depending on the value of j . If j ! m + 1, we 
use the gain of the prefactor λ̃−1/2 stemming from the fact that only j   −  1 time derivatives are 
involved:

λ̃
m−j

2
∣∣∂ j−1

t
(
Sx∂xV + Sy∂yV

)∣∣
Hk ! λ̃

−1
2 C(h−1

⋆ ,
∥∥V

∥∥
s,m,λ̃)

∥∥V
∥∥

s,m,λ̃.
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When j   =  m, we do not have the gain of the prefactor λ̃−1/2 but less than m  −  1 time deriva-
tives are involved:

λ̃
m−j

2
∣∣∂ j−1

t
(
Sx∂xV + Sy∂yV

)∣∣
Hk ! C(h−1

⋆ ,
∥∥V

∥∥
s,m,λ̃,(1 ))

∥∥V
∥∥

s,m,λ̃,(1 ).

The contribution of the third line is estimated in the same way. As for the contribution of the 
last line, we deduce from the explicit expression of Πreg that

∣∣Πreg∂k∂ j−1
t G(V)

∣∣
L2 ! µ

1
2
∣∣∂ j−1

t G(V)
∣∣
Hk+1

hence the contribution of the last line also satisfies the same estimates as above. Finally, the 
contribution of the fourth line is estimated by

λ̃
m−j

2
∣∣[∂k, St]∂

j
t V

∣∣
L2 ! C(h−1

⋆ ,
∣∣V

∣∣
Hs)λ̃

m−j
2
∣∣∂ j

t V
∣∣
Hk−1

! C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃,(1))
(
Nreg

j,k−1,m,λ̃
+ Nsing

j,k−1,m,λ̃

)
.

Altogether, by Cauchy–Schwarz inequality, we find for any m ! j ! s and k ∈ N such that 
k ! s− j:

Nreg
j,k,m,λ̃

! C(h−1
⋆ , δ−1

⋆ ,
∥∥V

∥∥
s,m,λ̃,(1))

(
Nsing

j,k,m,λ̃
+ Nreg

j,k−1,m,λ̃
+ Nsing

j,k−1,m,λ̃
+
∥∥V

∥∥
s,m,λ̃,(1)

)

+λ̃−1/2 C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃)
∥∥V

∥∥
s,m,λ̃.

 
(3.16)

3.3.3. Completion. Assuming λ̃ ! λµ and using that under the assumptions of proposition 
3.1, one has

∣∣Nreg
j,0,m,λ̃

∣∣2 +
∣∣Nsing

j,0,m,λ̃

∣∣2 = λ̃m−j∣∣∂ j
t V

∣∣2
L2 ! C(h−1

⋆ , δ−1
⋆ ,

∣∣V
∣∣
L∞)

∥∥V
∥∥2

s,m,λ̃,(1),

we immediately deduce from (3.15) and (3.16) that
∥∥V

∥∥
s,m,λ̃,(2 ) ! C(h−1

⋆ , δ−1
⋆ ,

∥∥V
∥∥

s,m,λ̃,(1 ))
∥∥V

∥∥
s,m,λ̃,(1 )

+ λ̃−1 /2 C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃)
∥∥V

∥∥
s,m,λ̃.

It follows that there exists ν⋆ = C(h−1
⋆ ,

∥∥V
∥∥

s,m,λ̃) such that provided

λµ ! λ̃ ! ν⋆,

the assumptions of proposition 3.1 are satisfied with δ⋆ = 1/2, and
∥∥V

∥∥
s,m,λ̃,(2 ) ! C(h−1

⋆ ,
∥∥V

∥∥
s,m,λ̃,(1 ))

∥∥V
∥∥

s,m,λ̃,(1 ).

Proposition 3.3 is proved.

4. Preparing the initial data

This section is dedicated to the proof of theorem 1.4. As in section 3, we fix λ,µ ∈ (0,+∞) 
and assume for simplicity that

λ ! 1 ; µ " 1 ; λµ ! 1,

the general setting being straightforwardly deduced. We shall prove by induction on m that 
we can set c(j ) for j ∈ {1, · · · , m} such that (1.12) and (1.13) hold. The basic idea consists in 
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iterating the system (1.4) in order to extract explicit expressions for time derivatives in terms 
of space derivatives, and to iteratively set the corrector terms c(j ) so as to cancel out singular 
(i.e. non-uniformly bounded) terms in these expressions. While it is not difficult to convince 
oneself, after manipulating the equations  and deducing expressions for the first corrector 
terms, that the induction process may indeed be successfully set up, one quickly realizes that 
the expressions are very cumbersome. The exact definition for c(j ) is provided in (4.7) below, 
and explicit expressions are provided only for the first-order terms, c(1) and c(2).

We first notice that after differentiating (1.4) with respect to time and using lemma 2.2 (we 
constantly use this lemma in the following when estimating nonlinear differential operators), 
one has that any solution U = (ζ, u, η, w) to (1.4) satisfies2

∣∣∂ j+1
t U

∣∣
Hs−( j+ 1 ) ! C(h−1

⋆ ,
∥∥U

∥∥
s,j)

(∥∥U
∥∥

s,j+ λ
∥∥η − h

∥∥
s,j

)
. (4.2)

Hence we can focus on proving inductively that

λ
∥∥η(m) − h(m)

∥∥
s,m(0 ) ! Mm

with Mm = C(h−1
⋆ , M0 )M0 . Notice that the result for m  =  0 is trivial and the result for m  =  1 

follows from setting c(1) = −h0∇ · u0 , as well as the identity

∂t(η − h) + u ·∇(η − h) = w + h∇ · u. (4.3)

Differentiating the above, and applying once again (1.4) on the first-order time derivatives, we 
find that any solution to (1.4) satisfies

∂ 2
t(η − h) = r[U] + λµs[U, η − h]− λht[h](η − h) (4.4)

where r, s and t are nonlinear differential operators (in space) of order two. The large prefac-
tor that λµ in front of s is compensated by the fact that this operator is quadratic in η − h, and 
hence we collect truly singular terms in the operator t:

t[h]ϕ = h−3 ϕ− µ

3
∇ ·

(
h−1∇ϕ

)
.

For future reference, we also notice that if U = U(1 )
0

def
= (ζ0 , u0 , h0 ,−h0∇ · u0 ), then s[U(1)

0 ] = 0  
and

r[U(1 )
0 ] = h0

(
u0 ·∇(∇ · u0 )− (∇ · u0 )

2 −∆ζ0 −∇ · ((u0 ·∇)u0 )
)

. (4.5)

Rooting from (4.3) and (4.4), we now define

Cj(U)
def
= ∂ j

t (r[U] + λµs[U, η − h])− λ
[
∂ j

t , ht[h]
]
(η − h)

and

Sm(U)
def
=

⌊m/2⌋∑

k=0

(−λht[h])kCm− 2k(U)

2 Here and below, we denote

∥∥U
∥∥2

s,m
def
=

m∑

j=0

∣∣∂ j
t U

∣∣2
Hs−j. (4.1)
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so that any solution to (1.4) satisfies for any m ! 2

∂m
t(η − h)−Sm−2 (U) =

{
(−λht[h])m/2 (η − h) if m is even,
(−λht[h])(m−1 )/2 ∂t(η − h) if m is odd.

 (4.6)

We deduce the following expression for c(m):

(−h0t[h0])
⌊m/2⌋c(m) = −Sm− 2(U

(m− 1)
0 )− (−λh0t[h0])

⌊m/2⌋s(m− 2) (4.7)

where Sm−2(U
(m−1)
0 ) is the differential operator of order m obtained when all time derivatives 

have been replaced by spatial derivatives through (1.4), and

s(m) def
=

{∑m/2
k= 1 λ

−kc(2 k) if m is even,
∑(m−1 )/2

k= 1 λ−kc(2 k+ 1 ) −
∑(m+ 1 )/2

k= 1 λ−ku0 ·∇c(2 k) if m is odd.

Notice c(m) is well-defined by (4.7) and induction on m, using lemma 2.3. We prove below that 
this choice allows to obtain the desired estimates.

Assuming m is even for simplicity (the case m odd is treated in the same way, with straight-
forward adjustments), we have by (4.7)

(−λh0 t[h0 ])
m/2 s(m−2 ) = −λh0 t[h0 ]Sm−4 (U

(m−3 )
0 ).

Now, we have by repeated use of (1.4) and direct product estimates that
∣∣λh0t[h0]

(
Sm−4(U

(m−3)
0 )−Sm−4(U

(m−1)
0 )

)∣∣
Hs−m

! C′
mλ

1+ m−4
2

(∣∣U(m−1)
0 − U(m−3)

0

∣∣
Hs−m + µ

m−2
2
∣∣U(m−1)

0 − U(m−3)
0

∣∣
Hs−2

)

where C′
m = C(h− 1

⋆ ,
∣∣U(m− 1 )

0

∣∣
Hs ,

∣∣U(m− 3 )
0

∣∣
Hs). Moreover, we have by definition

−λh0t[h0]Sm−4(U
(m−1)
0 ) = Sm−2(U

(m−1)
0 )− Cm−2(U

(m−1)
0 )

and
∣∣Cm−2 (U

(m−1 )
0 )

∣∣
Hs−m ! Cm

(∥∥U(m−1 )∥∥
s,m−2 + λ

∥∥η(m−1 ) − h(m−1 )∥∥
s,m−3

)

with Cm = C(h−1
⋆ ,

∥∥U(m−1 )
∥∥

s,m−2 ,λ
∥∥η(m−1 ) − h(m−1 )

∥∥
s,m−3 ). Combining the above and 

using the induction hypotheses (1.12) and (1.13), we find
∣∣Sm−2 (U

(m−1 )
0 ) + (−λh0 t[h0 ])

m/2 s(m−2 )∣∣
Hs−m ! C(h−1

⋆ , M0 )M0 .

It follows that by lemma 2.3 that c(m) is well-defined by (4.7) and satisfies
∣∣c(m)

∣∣
Hs−m + µm/2 ∣∣c(m)

∣∣
Hs ! C(h−1

⋆ , M0 )M0 .

Notice that we have in particular, since λµ ! 1, 
∣∣U(m)

0

∣∣
Hs ! C(h−1

⋆ , M0 )M0 . We also observe 
that for any j ! m, one has as above

λ
∣∣Sj−2 (U

(m−1 )
0 )−Sj−2 (U

(m)
0 )

∣∣
Hs−j ! C(h−1

⋆ , M0 )M0 .

Using this estimate with j   =  m in (4.7), plugging into (4.6) and using the definition (1.11) 
shows that with our choice of c(j ), one has

λ
∣∣∂m

t (η
(m) − h(m))

∣∣
Hs−m(0 ) ! C(h−1

⋆ , M0 )M0 .
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The corresponding estimates for time derivatives of lower order are obtained using the esti-
mate directly into (4.6) and using the induction hypothesis. Hence we proved

λ
∥∥η(m) − h(m)

∥∥
s,m(0 ) ! C(h−1

⋆ , M0 )M0 ,

and we deduce from (4.2)
∥∥U(m)

∥∥
s,m+ 1 (0 ) ! C(h−1

⋆ , M0 )M0 .

This completes the inductive proof of (1.12) and (1.13). We have already displayed 
c(1) = −h0∇ · u0 , and (4.7) with (4.5) yields

(h0 t[h0 ])c(2 ) = C0 (U
(m−1 )
0 )

= h0
(
u0 ·∇(∇ · u0 )− (∇ · u0 )

2 −∆ζ0 −∇ · ((u0 ·∇)u0 )
)

,

from which we deduce the explicit expression for c(2) displayed in theorem 1.4.

5. Conclusion

We have shown the relevance of the Favrie–Gavrilyuk system (1.2) for producing approxi-
mate solutions to the Green–Naghdi system (1.1), and ultimately the water-waves system. 
To this aim, we have exhibited the impact of the shallowness parameter, which may induce 
undesirable oscillations in space in the shallow-water regime. In order to avoid these oscilla-
tions it appears necessary—or at least advisable—to suitably set the initial data for the aug-
mented variables η, w. The following setting is expected to produce good results: set λ ! gH 
where H is the layer’s depth, and given the physical (dimensional) initial data h |t=0 = h0 and 
u |t=0 = u0, let

w |t=0 = −h0∇ · u0 and η |t=0 = h0 + λ−1c

where c is the unique solution to

t[h0]c = −g∆ζ0 + u0 ·∇(∇ · u0)− (∇ · u0)
2 −∇ · ((u0 ·∇)u0)

where

t[h0 ]c
def
= h−3

0 c− 1
3
∇ ·

(
h−1

0 ∇c
)

.

We emphasize the fact that w and η are additional variables of the Favrie–Gavrilyuk system, 
and hence the above choice does not represent any physical restriction on the initial data, solely 
defined by h0, u0. The choice above appears as a good compromise between not preparing 
the initial data at all (the choice η |t=0 = h0 and w |t=0 = 0 which was made in [11] might 
be responsible for the observed lack of convergence as λ increases) and a fine preparation of 
the initial data, that is adding additional corrector terms whose formula quickly increase in 
complexity.

Whether this choice is suitable in practical cases could be verified through numerical experi-
ments. To our knowledge, the Favrie–Gavrilyuk system has been numerically implemented 
only in the original work [11] with a particular focus on the incidence of the mesh size, and in 
[17] where perfectly matched layer (PML) boundary conditions are proposed (incidentally, a 
study on the existence of solitary wave solutions to the Favrie–Gavrilyuk system is also carried 
out). A real numerical investigation on the convergence towards the corre sponding solution to 
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the Green–Naghdi system as λ→∞, and the influence of the shallow-water parameter and 
the choice of the initial data is still missing. Proposing a well-adapted (asymptotic preserving) 
numerical scheme would however most certainly require a tailored analysis in particular due to 
the fact that the linearized system is not uniformly stable as λ→∞, and exceeds the capabili-
ties of the author. A direct comparison of the two systems on standard benchmarks such as the 
one set up by Beji and Battjes [4] and Dingemans [8] would of course be extremely beneficial.

Notice the benchmarks above involve a non-trivial topography. Another challenge for 
future studies on the Favrie–Gavrilyuk system would consist in taking into account such vari-
ations in space (or time) of the bottom topography. While the corresponding system is easily 
derived3, it yields new singular terms, but with variable coefficients. The strategy used in this 
work is not applicable due to the lack of commutation of these singular terms with respect 
to differentiation, and another approach is necessary. We refer to [6] for a related problem. 
Here again, numerical experiments would provide useful information as to the validity of the 
Favrie–Gavrilyuk system in this context.
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