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Abstract. We study the inviscid multilayer Saint-Venant (or shallow-water) system in the limit of small density contrast. We
show that, under reasonable hyperbolicity conditions on the flow and a smallness assumption on the initial surface deformation,
the system is well-posed on a large time interval, despite the singular limit. By studying the asymptotic limit, we provide
a rigorous justification of the widely used rigid-lid and Boussinesq approximations for multilayered shallow water flows. The
asymptotic behaviour is similar to that of the incompressible limit for Euler equations, in the sense that there exists a small initial
layer in time for ill-prepared initial data, accounting for rapidly propagating “acoustic” waves (here, the so-called barotropic
mode) which interact only weakly with the “incompressible” component (here, baroclinic).
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1. Introduction

1.1. Presentation of the models and the problem

This work dedicated to the study of the so-called multilayer Saint-Venant system, which arises as an
approximate model for the propagation of waves in the ocean or atmosphere, when density stratification
cannot be neglected. We will refer to as free surface system the following first-order, quasilinear system
of N(1 + d) coupled evolution equations:{

∂tζn +∑N
i=n ∇ · (hiui) = 0,

∂tun + g

ρn

∑n
i=1(ρi − ρi−1)∇ζi + (un · ∇)un = 0

(n = 1, . . . , N). (1.1)

Here, the unknowns ζn(t, x) and un(t, x) represent respectively the deformation of the nth interface and
the layer-averaged horizontal velocity in the nth layer, at time t and horizontal position x ∈ Rd where
d ∈ {1, 2}; see Fig. 1. If d = 2, then we denote x = (x, y) and un = (ux

n, u
y
n). We denote by ρn > 0

the mass density of the homogeneous fluid in the nth layer, whereas g is the gravitational acceleration.
Finally,

hn(t, x)
def= δn + ζn(t, x) − ζn+1(t, x) > 0

is the depth of the nth layer. By convention, we set ρ0 = 0 (above the upper free surface is vacuum), and
ζN+1(t, x) ≡ 0 (the bottom is flat). We restrict ourselves to the setting of stable stratification, namely

0 < ρ1 < · · · < ρN.
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Fig. 1. Sketch of the domain and notations.

We may rescale the variables so as to replace the factor

g

ρn

(ρi − ρi−1) ←− ri

γn

, where ri
def= γi − γi−1

1 − γ1
and γn

def= ρn

ρN

.

More precisely, we use the following nondimensionalization:

x ← x/λ, ζn ← ζn/a, δn ← δn/a, t ← c0t/λ, un ← un/c0,

where λ is a characteristic horizontal length (say the wavelength of the flow), a is a characteristic vertical

length (say the typical depth of one layer at rest), and c0
def= √

(1 − γ1)ga is a velocity.1

Although λ does not appear in our system, it plays a very important role as the Saint-Venant system
may be seen as the first-order asymptotic model obtained from the full multilayer water-wave system in

the limit μ
def= a2/λ2 → 0; see [11,25] in the one-layer case and [14] in the bilayer (albeit irrotational)

setting. It may also be formally obtained using the hydrostatic and columnar motion assumptions; see
[5,26,34,38,39].

In this work, we ask

Qn. What is the behaviour of the solutions to (1.1) in the limit γ1 → γN = 1?

The first observation is that the velocity evolution equations become singular, as r1 = γ1−γ0
1−γ1

→ ∞
since γ0 = 0 by convention, so that even the existence of solutions on a non-trivial time interval is far
from straightforward.

At the linear level, it is known [40] (see also Appendix B) that the flow may be decomposed into
N modes, propagating as linear wave equations with distinct velocities. In our setting, the first mode,
i.e. the barotropic mode, propagates much faster than the other, baroclinic modes, in the sense that the

1Because we assume that the layers are all of comparable depth and the vertical stratification is balanced, in the sense that we
fix m > 0 such that supi∈{1,...,N}{δi , δ

−1
i , ri , r

−1
i } � m, then c0 measures the typical velocity of propagation of the baroclinic

modes; see Appendix B.
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former is typically of size ≈ 1√
1−γ1

while the latter are uniformly bounded when γ1 → 1; hence the
singularity. While such a decomposition is exact only in the linear setting, we show in this work that
the flow behaves in a similar way in the weak density contrast limit even when strong nonlinearities are
present, provided that the initial surface deformation is small, the depth of each layer remains positive
and shear velocities are not too large. Roughly speaking, we show that one may then approximate the
flow as the superposition of rapidly propagating acoustic waves and a non-singular “slow” mode with
non-trivial dynamics.

Let us be more precise. Asymptotically, the fast mode describes the propagation of the free surface,

ζ1, and total volume flux, namely �w where w def= ∑N
i=1 hiui and �

def= ∇	−1∇· is the orthogonal
projection onto irrotational vector fields. One has at first order, in dimension d = 2 and provided that ζ1

and �w are initially balanced so that ζ1 ≈ √
1 − γ1w, the linear acoustic system

∂tζ1 + ∇ · (�w) = 0; ∂t (�w) +
∑N

n=1 δn

1 − γ1
∇ζ1 = 0. (1.2)

The slow component contains all the baroclinic modes which interact strongly one with each other in the
nonlinear setting. We show that it is asymptotically described by the rigid-lid model, which is obtained
from the free-surface system by setting ζ1 ≡ 0 in the mass conservation equations, and replacing r1∇ζ1

with ∇p in the velocity evolution equations (see [5,27]). In addition, we apply the so-called Boussinesq
approximation (see e.g. [20]) to the limit system, that is we set γn = 1 in the velocity evolution equations
while rn remains fixed and non-trivial. This yields{

∂tζn +∑N
i=n ∇ · (hiui) = 0,

∂tun + ∇p +∑n
i=2 ri∇ζi + (un · ∇)un = 0

(n = 1, . . . , N), (1.3)

with the same notation as before, except ζ1(t, x) ≡ 0 and h1(t, x)
def= δ1 − ζ2(t, x). In particular, the first

equation is not an evolution equation but a constraint (conservation of total mass), namely

∇ ·
(

N∑
i=1

hiui

)
= 0.

Physically speaking, p(t, x) is (up to a constant) the pressure at the flat, rigid lid. From a mathematical
viewpoint, p is the Lagrange multiplier associated with the above divergence-free constraint. It may be
reconstructed from the knowledge of ζ2, . . . , ζN, u1, . . . , uN by solving the Poisson equation(

N∑
n=1

δn

)
	p +

N∑
n=1

∇ ·
(

hn(un · ∇)un + un∇ · (hnun) + hn

n∑
i=2

ri∇ζi

)
= 0.

We thus offer a rigorous justification (the formal justification is generally attributed to Armi [2]) of
the widely used rigid-lid and Boussinesq approximations for free surface multilayer shallow-water flows
with a small density contrast.
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1.2. Main results

Before stating our main results, let us recall for convenience the system of equations at stake:{
∂tζn +∑N

i=n ∇ · (hiui) = 0,

∂tun + 1
γn

γ1
1−γ1

∇ζ1 + 1
γn

∑n
i=2 ri∇ζi + (un · ∇)un = 0

(n = 1, . . . , N), (1.4)

where hi
def= δi +ζi −ζi+1 with convention ζN+1 ≡ 0 and ri

def= γi−γi−1
1−γ1

. In the following, we fix parameters
δ1, . . . , δN, r2, . . . , rN ∈ (0, ∞); and denote

m
def= max

i∈{1,...,N}
{
δi, δ

−1
i , ri, r

−1
i

}
.

We can then reconstruct γi ∈ (0, 1) with γi = 1 − 
2
∑N

j=i+1 rj (i = 2, . . . , N) and γ1 = 1 − 
2 where

 is the only parameter allowed to vary, and by assumption


 
 1.

It is also convenient to denote (notice the 
−1 prefactor; see Remark 1.3 below)

U
def= (
−1ζ1, ζ2, . . . , ζN, ux

1, . . . , u
x
N, u

y

1, . . . , u
y

N

)�
,

so that the control of U in Sobolev space Hs(Rd) (see Appendix A for notations) yields, when d = 2,

|U|2Hs

def= 1


2
|ζ1|2Hs +

N∑
n=2

|ζn|2Hs +
N∑

n=1

∣∣ux
n

∣∣2
Hs +

N∑
n=1

∣∣uy
n

∣∣2
Hs .

Let us now state the main results of this work.

Theorem 1.1 (Large time well-posedness). Let s > d/2 + 1 and Uin ∈ Hs(Rd)N(1+d) be such that

∀n ∈ {1, . . . , N}, inf
x∈Rd

hin
n � h0 > 0, (1.5)

where hin
n

def= δn + ζ in
n − ζ in

n+1, and we recall the convention ζN+1 ≡ 0.
One can set ν0, 


−1
0 = C(m, h−1

0 , |Uin|Hs ) such that if Uin satisfies additionally

∀n ∈ {2, . . . , N}, sup
x∈Rd

∣∣uin
n − uin

n−1

∣∣ < ν−1
0 , (1.6)

then there exists T > 0 and a unique U ∈ C0([0, T );Hs(Rd)N(1+d)) strong solution to (1.4) and U|t=0 =
Uin, and satisfying (1.5), (1.6) with h0/2 and ν0/2 for any t ∈ [0, T ). Moreover, one has

T −1 �
∣∣Uin
∣∣
Hs × C

(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)
and ‖U‖L∞(0,T ;Hs) �

∣∣Uin
∣∣
Hs × C

(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)
,

uniformly with respect to 
 ∈ (0, 
0).
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Theorem 1.2 (Strong convergence). Let d = 2, s > d/2 + 1, and Uin ∈ Hs(Rd)N(1+d) as above. Then
there exists T > 0 with T −1 � |Uin|Hs × C(m, h−1

0 , |Uin|Hs ) and, for 
 sufficiently small,

• U ∈ C0([0, T );Hs(Rd))N(1+d) a unique strong solution to (1.4) and U|t=0 = Uin;
• (pRL, ζ RL

2 , . . . , ζ RL
N , uRL

1 , . . . , uRL
N )� ∈ L∞(0, T ;Hs(Rd))N(1+d) a unique strong solution to (1.3)

with initial data

ζ RL
n

∣∣
t=0 = ζ in

n (n = 2, . . . , N) and uRL
n

∣∣
t=0 = uin

n − δ−1�win (n = 1, . . . , N),

where δ
def= ∑N

n=1 δn is the total depth, win def= ∑N
n=1(δn + ζ in

n − ζ in
n+1)u

in
n with convention ζ in

1 =
ζ in
N+1 = 0 and �

def= ∇	−1∇· the orthogonal projection onto irrotational vector fields.
• 
−1ζ ac

1 , wac ∈ C0([0, T );Hs(Rd))1+d a unique strong solution to (1.2) with

ζ ac
1

∣∣
t=0 = ζ in

1 and wac
∣∣
t=0 = �win.

Moreover, one has for any 0 � s ′ < s,∥∥U − Uapp
∥∥

L∞(0,T ;Hs′ (Rd ))
→ 0 (
 → 0),

where Uapp def= (
−1ζ ac
1 + 
pRL, ζ RL

2 , . . . , ζ RL
N , uRL

1 + δ−1�wac, . . . , uRL
n + δ−1�wac)�.

Remark 1.3. As mentioned in the Introduction, our hypotheses contain a smallness assumption on the
initial deformation of the surface, namely ζ1|t=0 = O(
). This assumptions is natural so as to balance
the contributions in the (preserved in time) energy:

E
def= 1

2

∫
Rd

γ1


2
|ζ1|2 +

N∑
n=2

rn|ζn|2 +
N∑

n=1

γnhn|un|2.

Without this assumption, the flow possesses a strongly nonlinear barotropic component, and energy
methods yield a well-posedness theory over a small time-domain, t ∈ [0, T ), T −1 = O(
−1); see
Proposition 2.1 and Remark 2.2, below. On this timescale, the baroclinic component do not evolve, so
that all the dynamics is described by the barotropic component (asymptotically as 
 → 0).

Remark 1.4. The requirement 
 ∈ (0, 
0) does not lose in generality in Theorem 1.1: the case of non-
small 
 follows from the standard well-posedness theory of quasilinear systems, as proved by Monjarret
in [32] and stated in Proposition 2.1, below.

Remark 1.5. Our proof does not rely on, but rather provides, the existence and uniqueness of strong
solutions of the limit (rigid-lid) system. In that respect, one may see the free-surface system (1.4) as a
penalized model for (1.3) relaxing the rigid-lid constraint. Sharper well-posedness results for the rigid-
lid system in the two-layer case and without the Boussinesq approximation are provided in [8,21].

Remark 1.6. Theorem 1.2 is restricted to d = 2 because we use dispersive decay estimates on rapidly
propagating acoustic waves in order to control nonlinear coupling effects between the fast and slow
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modes. In the case of dimension d = 1, and provided that the initial data is sufficiently localized in
space, we justified in [15] a similar mode decomposition of the flow, by making use of the different
spatial support of each mode after small time. Proposition 4.4 therein, together with Proposition 3.8 in
the present work, offer a convergence between the exact and the approximate solution with rate O(
).
The same convergence rate holds in the case of dimension d = 2 and well-prepared initial data, in the
sense of Proposition 4.2.

In the following, for the sake of simplicity, we limit our study to the case of dimension d = 2, although
we find it more telling to keep the notation d. The proof of Theorem 1.1 is easily adapted to the case of
dimension d = 1.

Remark 1.7. One could add, without any additional difficulty, a uniformly bounded and order-zero term
to the system, so as to take into account for instance the Coriolis force, atmospheric pressure variations,
or bottom topography. Notice however that these terms should be of size O(
) in the evolution equation
for ζ1; in particular, only small topography may be dealt with using directly our strategy. Similarly,
except in the one-layer case where the component due to Coriolis effect is an anti-symmetric perturbation
of a symmetric system, one cannot allow a rapid rotation such as in the quasi-geostrophic regime, which
would correspond here to Ro ≈ 
 where Ro is the Rossby number; see [17,36].

Remark 1.8. Our results are valid for arbitrary N , but not uniformly. In particular, we cannot control
the dependence of 
0, ν0 as N grows. Thus our strategy cannot be adapted to study the system in the
limit N → ∞, corresponding to the physically relevant situation of continuous stratification. A similar
shortcoming was already noticed and discussed by Ripa in [37].

1.3. Discussion and strategy

A well-posedness result on system (1.4) is stated and proved in [32]. It follows from a standard analysis
on quasilinear systems since a symbolic symmetrizer may be exhibited (see Section 2 below). However,
due to the presence of singular components in the system, the a priori maximal time of existence of the
solutions may be bounded from below only as Tmax � 
 using this method. Such a result is unsuitable
for our purpose as the time interval shrinks to zero in the considered limit, and is inconsistent with
oceanographic observations of large amplitude internal waves propagating over long distances; see e.g.
[33] and references therein.

In order to go beyond this analysis and provide a time of existence of solutions uniformly bounded
from below with respect to 
 small, we need to take advantage of some additional structural properties
of the system. This structure is put to light by a suitable change of variable, which we describe below.

Let us introduce the shear velocities, vi , and the total horizontal momentum, w, as follows:

w def=
N∑

n=1

hnun and vi
def= γiui − γi−1ui−1 (i = 2, . . . , N); (1.7)

so that, conversely, for any n = 1, . . . , N ,

un = γ −1
n∑N

i=1 γ −1
i hi

(
w +

N∑
j=2

αn,j vj

)
with αn,j =

{∑j−1
i=1 γ −1

i hi if j � n,

−∑N
i=j γ −1

i hi otherwise.
(1.8)
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One may rewrite system (1.4) using the new variables as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t (


−1ζ1) + 1


∇ · w = 0,

∂t ζn +∑N
i=n ∇ · (hiui) = 0,

∂tvn + rn∇ζn + γn(un · ∇)un − γn−1(un−1 · ∇)un−1 = 0,

∂tw + (
∑N

j=1 γ −1
j hj )

γ1
1−γ1

∇ζ1 +∑N
i=2(
∑N

j=i γ
−1
j hj )ri∇ζi +∑N

i=1 ∇ · (hiui ⊗ ui) = 0

(n = 2, . . . , N), (1.9)

where ∇ · (hiui ⊗ ui)
def= ( ∂x(hi |ux

i |2)+∂y(hiu
x
i u

y
i )

∂x(hiu
x
i u

y
i )+∂y(hi |uy

i |2)
)
, and ui = (ux

i , u
y

i )
� are meant as the expressions in terms

of (ζ1, . . . , ζN, v2, . . . , vN, w)� given in (1.8).
The above change of variables may be seen as an approximate normal form allowing to decouple the

slow and fast components of the flow. Indeed, since

N∑
j=1

γ −1
j hj =

N∑
j=1

δj + 

(

−1ζ1
)+ O
(

2
)
,

one sees immediately that the singular terms appear only as linear components on the evolution equations
for 
−1ζ1 and w – or more precisely �w – and involve only 
−1ζ1 and �w. In other words, the leading-
order terms form a system of rapidly propagating acoustic waves in 
−1ζ1, w:{

∂t (

−1ζ1) + 1



∇ · w = 0,

∂tw + 1


(
∑N

j=1 δj )∇(
−1ζ1) = O(1).

The remainder contains quasilinear components depending on both the fast (
−1ζ1, �w) and slow
(ζ2, . . . , ζn, v2, . . . , vn, (Id − �)w) variables, so we need to consider the full system of equations (1.9)
in order to obtain the desired uniform energy estimates.

Let us now, for the sake of simplicity, restrict our discussion to the case of dimension d = 1. From the
above, we may rewrite the system (1.9) as

∂tV + 1



B[V] ∂xV = ∂tV + 1



L ∂xV + C[V] ∂xV = 0, (1.10)

where V
def= (
−1ζ1, ζ2, . . . , ζN, v2, . . . , vN, w)�, so that ∂tV + 1



L ∂xV = 0 represents the above acoustic

wave system for the fast variables, while ker(L) = span(ζ2, . . . , ζN, v2, . . . , vN); and C[V] contains
lower-order (in terms of 
) and coupling terms.

We shall make use of the fact that one can construct a “good” symmetrizer of the system under
the form (1.10), namely we exhibit real, positive-definite matrices T[V] such that T[V] = (T[V])� and
T[V]B[V] = (T[V]B[V])�, and satisfying the decomposition

T[V] = T(0) + T(1)

[
(Id − �f)V

]
(Id − �f) + O(
),
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where (Id−�f) is the orthogonal projection onto ker(L), the slow variables. Indeed, one obtains an energy
estimate by taking the L2 inner-product of the equation with T[V]V, which only requires to estimate

∣∣∣∣∂x

(
1



T[V]B[V]

)∣∣∣∣
L∞

+ ∣∣∂t

(
T[V])∣∣

L∞ .

Using that L and T(0) are constant operators and that (Id − �f) ∂tV = −(Id − �f)C[V] ∂xV = O(1), we
see that the above are estimated uniformly with respect to 
 small; thus we have a uniform control of the
L2 norm. The corresponding Hs estimate with s > d/2 + 1 does not bring additional difficulties, using

that L commutes with the Fourier multiplier 
s def= (1 − 	)s/2Id.
There remains to understand why such symmetrizer exists for our system (1.10). One could check,

after tedious calculations, that the explicit one provided by Monjarret in [32] (after applying the con-
gruent transformation associated with the change of variables) satisfies the necessary hypotheses, but
we offer in Appendix B an alternative and more robust construction. We show that, provided that V
satisfies (1.5), (1.6), then 1



B[V] has 2N real and distinct eigenvalues. Two of them are asymptotically

equivalent to λ± ≈ ± 1



√∑N
j=1 δj as 
 → 0 while the other ones are uniformly bounded with respect to


 small. The spectral projection corresponding to the former converge towards the projections onto the
eigenspaces corresponding the two non-trivial eigenvalues of L. Using the scale separation between the
eigenvalues, one shows that the spectral projections corresponding to the latter are uniformly bounded,
and that they converge as 
 → 0 towards independent, rank-one projections onto subspaces of ker(L).
Our symmetrizer is then, classically,

T[V] def=
2N∑
j=1

(
Pj [V])�Pj [V],

where Pj [V] is the spectral projection onto the j th eigenspace of B[V]. That T[V] enjoys the de-
sired properties follows, using standard perturbation theory [22], from the fact that L is constant,
ker(L) ⊕⊥ ran(L) = R2N and the strong scale separation between |λ±| � 1/
 and uniformly bounded
eigenvalues.

An additional difficulty arises in the situation of horizontal dimension d = 2, due to the fact that
the symmetrizer of the system – which is constructed from the symmetrizer in dimension d = 1 and
a rotational invariance property – is only a symbolic symmetrizer, as opposed to symmetrizers in the
sense of Friedrichs. Thus we rely on para-differential calculus, but extra care must be given to “lower
order terms” in the sense of regularity, which may effectively hurt our energy estimates if they are not
uniformly bounded with respect to 
. As a matter of fact, we use that one can construct an explicit
operator (defined as a Fourier multiplier) which symmetrizes the linear, singular contributions of the
system, and use para-differential calculus only on the next order components in terms of 
.

Given the uniform (with respect to 
 small) energy estimates, the large time well-posedness (Theo-
rem 1.1) follows from the standard theory for quasilinear hyperbolic systems. The convergence results
(Theorem 1.2 as well as additional assertions in Section 5) proceed from rather standard techniques in
the study of singular systems; see references below.
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1.4. Related earlier results

In [15], the author studied the so-called inviscid bilayer Saint-Venant (or shallow water) system in
the limit of small density contrast. The change of variables allowing for uniform energy estimates was
exhibited therein, and convergence towards a solution of the rigid-lid limit, as well as a second-order
approximation, was deduced in the case of well-prepared initial data. This work is therefore an extension
of these results to the situation of (horizontal) dimension d = 2, ill-prepared initial data as well as
arbitrary number of layers.

As already noticed in the aforementioned work, our problem has many similarities with the (two-
dimensional) incompressible limit for Euler equations, as studied initially in [9,23,24]. As a matter of
fact, if we consider only one layer of fluid, then our problem corresponds exactly to a special case of the
isentropic incompressible limit, and we recover the results of Ukai [42] and Asano [3]. We will not detail
the very rich history of results concerning this problem (we let the reader to [1,19,28] for comprehensive
reviews) but rather aim at pointing out similarities and differences of our situation.

Let us first recall the two-dimensional isentropic Euler equations for inviscid, barotropic fluids:{
∂tρ + ∇ · (ρv) = 0,

∂t (ρv) + 1
ε2 ∇P + ∇ · (ρv ⊗ v) = 0,

(1.11)

where P = P(ρ) is a given pressure law, ρ > 0 is the density, v the velocity, and ε the dimensionless
Mach number. As claimed above, one recognizes exactly (1.9) in the one layer setting (N = 1), by
setting P(ρ) ∝ ρ2, and identifying

ρ ←→ h1 = δ1 + ζ1, ρv ←→ w and ε ←→ 
.

Of course, the difficulty in our case is that, as one considers additional layers of fluids, these equations
are coupled with additional equations on additional unknowns, so as to produce a full quasilinear system.
Since these additional equations are non-singular with respect to the small parameter, it is tempting to
compare our situation with the incompressible limit for the non-isentropic Euler equations, where (1.11)
is coupled with an additional evolution equation for the entropy, S:

∂tS + (v · ∇)S = 0

and P = P(ρ, S).
Our situation, however, is quite different. This can be seen from the fact that, contrarily to the non-

isentropic Euler equations, the linearized system is balanced, in the sense that a small perturbation of
the “slow” component of the reference state induces only a small deviation for the solution. In other
words, using the notation of the above discussion, the symmetrizer of the non-isentropic Euler equations
does not satisfy T[V] = T(0) + T(1)[(Id − �f)V](Id − �f) + O(
) but only T[V] = T(0) + T(1)[(Id −
�f)V] + O(
); see discussion in [30]. This additional property in our situation allows in particular
to straightforwardly deduce Hs energy estimates from the corresponding L2 energy estimate; and to
obtain the strong convergence result of Theorem 1.2 simply from dispersive estimates on the “acoustic”
component of the flow, as originally carried out by Ukai [42] and Asano [3] in the isentropic case.

In order to deal with this situation, Métivier and Schochet [30] (see also [7]) rely on the fact that their
system enjoys a diagonal block structure and that the symmetrizer commutes exactly with the singular
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operator, denoted 1



L ∂x in the above discussion. Roughly speaking, this means that we may control the
compressible and isentropic component of the flow independently of the acoustic component by simply
projecting onto ker(L). Since such assumptions are only approximately satisfied in our situation, our
system is rather related to the “
-balanced” (and not “
-diagonal”) systems studied by Klainerman and
Majda [23], although we do not restrict ourselves to well-prepared initial data.

In this spirit, our proofs rely as little as possible on explicit calculations, thus we expect that the general
strategy may be successfully applied to other situations and other frameworks, such as the ones presented
in [35]. This is why we use mostly in the following the terminology of “fast vs slow” mode/component
instead of “barotropic vs baroclinic” which is more relevant to our initial oceanographic motivation (see
[20]); or “acoustic vs incompressible” associated with Euler equations.

1.5. Outline of the paper

In Section 2, we recall that our quasilinear system admits an explicit (symbolic) symmetrizer, which
yields immediately a well-posedness theory for (1.4), for any fixed 
 > 0.

In Section 3.1, we exhibit the structural properties enjoyed by our system, after the change of vari-
ables (1.7), (1.8), and which allow the uniform (with respect to 
 small) energy estimates provided in
Section 3.2 (Proposition 3.5) and Section 3.3 (Proposition 3.8).

We deduce in Section 4 the large-time well-posedness result of Theorem 1.1. Additionally, we show
in Proposition 4.2 that an assumption of well-prepared initial data is propagated by the flow for positive
times.

Section 5 is dedicated to convergence results. We first state in Proposition 5.1 a weak convergence
result for the solutions of the free-surface system as 
 → 0. As in the incompressible limit for Euler
equations, the convergence cannot be strong uniformly in time, due to the rapidly propagating fast mode.
However, we show in Proposition 5.2 that this small initial layer in time vanishes in the case of well-
prepared initial data, and then characterize the defect for general initial data in Section 5.3, yielding
Theorem 1.2.

Appendix A contains a description of some notations used throughout the text, as well as a short review
of standard results concerning product and commutator estimates in Sobolev spaces (Section A.2) and
Bony’s paradifferential calculus (Section A.3).

Finally, Appendix B is dedicated to some results on the eigenstructure of our system, which are used
in Section 3.1.

2. Standard well-posedness theory

In this section, we fix 
 > 0 and construct an explicit (symbolic) symmetrizer of (1.4). This offers
a well-posedness result similar to Theorem 1.1, although non-uniformly with respect to 
 small. This
analysis has been provided by Monjarret in [32]; we recall it here for the sake of completeness and
because the objects defined therein will be of later use.

Let us first rewrite the free-surface system (1.4) with a matricial, compact formulation. Provided that

U
def= (
−1ζ1, ζ2, . . . , ζN, ux

1, . . . , u
x
N, u

y

1, . . . , u
y

N)� ∈ C0([0, T );Hs(Rd))N(1+d) with s > d/2 + 1, one
can rewrite (1.4) equivalently as

∂tU + 1



Ax[U] ∂xU + 1



Ay[U] ∂yU = 0, (2.1)



V. Duchêne / The multilayer shallow water system in the limit of small density contrast 199

with

1



Ax[U] def=

⎛⎝M(ux) H(ζ ) 0N

R D(ux) 0N

0N 0N D(ux)

⎞⎠ ,
1



Ay[U] def=

⎛⎝M(uy) 0N H(ζ )

0N D(uy) 0N

R 0N D(uy)

⎞⎠ . (2.2)

Here and thereafter, we heavily make use of the block structure of N(1 + d)-by-N(1 + d) matrices. We
denote by 0N the N-by-N matrix with only zero entries, and for u ∈ RN , D(u) = diag(u1, . . . , uN).
Moreover, M, H are upper-triangular and R is lower-triangular and are defined by

M(u)n,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1


(ui − ui−1) if 1 = n < i,

ui − ui−1 if 2 � n < i,

ui if i = n,

0 if i < n,

Hn,i =

⎧⎪⎨⎪⎩
1


hi if n = 1,

hi if i � n � 2,

0 if i < n,

Rn,i =

⎧⎪⎨⎪⎩
1



γ1
γn

if i = 1,
ri
γn

if n � i � 2,

0 if n < i.

Proposition 2.1 ([32], Theorem 2.8). Let s > d/2 + 1 and Uin ∈ Hs(Rd)N(1+d) be such that

∀n ∈ {1, . . . , N}, inf
x∈Rd

hn = inf
x∈Rd

(δn + ζn − ζn+1) > h0 > 0, (2.3)

where we recall that ζN+1 = 0 by convention. One can set ν0 = C(m, h−1
0 ) > 0 such that if Uin satisfies

additionally

∀n ∈ {2, . . . , N}, sup
x∈Rd

∣∣ux
n − ux

n−1

∣∣+ ∣∣uy
n − u

y

n−1

∣∣ < ν−1
0 , (2.4)

then there exists a unique Tmax > 0 and U ∈ C0([0, Tmax);Hs(Rd)N(1+d)), maximal solution to (2.1) and
U|t=0 = Uin.

Moreover, if Tmax < ∞, then |U|W 1,∞(t) → ∞ (t ↑ Tmax) or one of the hyperbolicity conditions (2.3),
(2.4) ceases to be true.

Remark 2.2. Naively following the above strategy and keeping track of the dependency of constants
with respect to the parameter 
 would yield a disappointing lower bound on the maximal time of ex-
istence, namely T −1

max � 
−1, even when the initial surface deformation is assumed small as in The-
orem 1.1. It is the main result of this work that, in this case, the well-posedness theory and uniform
energy estimates can be extended to a non-shrinking time domain as 
 → 0.

The conditions (2.3), (2.4) ensure that the symmetrizer, defined in (2.7) below, is coercive. It is there-
fore a sufficient condition for hyperbolicity. Except in very specific cases, one has very few information
on the domain of hyperbolicity; see discussion in Appendix B.

The fact that (2.4) requires a control on the shear velocities, un − un−1 rather than on the velocities
themselves is allowed by some freedom in the choice of the symmetrizer. Notice in particular that the
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Hessian of the conserved energy yields a natural symmetrizer for our system of conservation laws in the
case of irrotational flows, but it does not enjoy the desired property.

The ability to construct symmetrizers depending strongly on the shear velocities but only weakly on a
background velocity (or on the total volume flux) is also essential for us to obtain results outside of the
scope of well-prepared initial data; see [15] for an analysis where this property is not used.

Proof. Let us introduce the symbol of (2.1):

A[U, ξ ] def= ξxAx[U] + ξyAy[U].
An important property of our system is that is satisfies rotational invariance [32, Section 1.2]. More
precisely, one can easily check that

∀ξ = (ξx, ξy
)� ∈ Rd \ {0}, A[U, ξ ] = Q(ξ)−1Ax

[
Q(ξ)U
]
Q(ξ)|ξ |, (2.5)

where

Q(ξ) = 1

|ξ |

⎛⎝ |ξ |IN 0N 0N

0N ξx IN ξy IN
0N −ξy IN ξx IN

⎞⎠ , (2.6)

where IN is the N-by-N identity matrix and |ξ | def= (|ξx |2 + |ξy |2)1/2. Obviously, Q(ξ) is homogeneous
of degree 0 in ξ , with entries in C∞(Rd \ {0}) and is orthogonal: Q(ξ)−1 = Q(ξ)�.

This allows to construct a (symbolic) symmetrizer of the system from a (Friedrichs) symmetrizer of
Ax alone. More precisely, define

Sx[U] =
⎛⎜⎝ D(r̃) L� 0N

L D(γ )D(h) 0N

0N 0N D(γ )D(h)

⎞⎟⎠ (2.7)

with D(r̃)
def= diag(γ1, r2, . . . , rN) and L

def= −D[γ (ux + Kx)]	D[e
] where D(e
)
def= diag(
, 1, . . . , 1),

	
def=

⎛⎜⎜⎜⎝
−1 1 (0)

. . .
. . .

. . . 1
(0) −1

⎞⎟⎟⎟⎠ , 	−1 =
⎛⎜⎝−1 (−1)

. . .

(0) −1

⎞⎟⎠ ,

and the parameter Kx may be chosen freely in span(ux).
That Sx[U]Ax[U] is symmetric is easily checked once we notice the following identities in (2.1):

M(u) = D(e
)
−1	−1D(u)	D(e
), H = −D(e
)

−1	−1D(h) and R = −D(γ −1)(	−1)�D(r̃)D(e
)
−1.

It follows that S[U, ξ ] def= Q(ξ)−1Sx[Q(ξ)U]Q(ξ) is a symbolic symmetrizer of (2.1), since

S[U, ξ ]A[U, ξ ] = Q(ξ)�Sx
[
Q(ξ)U
]
Ax
[
Q(ξ)U
]
Q(ξ)|ξ |
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is obviously symmetric. Finally, one may choose Kx = −ux
1 for instance, so that as soon as U satis-

fies (2.3), (2.4) with ν0 sufficiently small, then Sx[Q(ξ)U] is strictly diagonally dominant with positive
diagonal entries, and therefore definite positive, uniformly for any ξ ∈ Rd \ {0}.

Proposition 2.1 is now a direct consequence of the standard theory of first-order hyperbolic quasilinear
systems; see [29] for instance. �

3. Uniform energy estimates

In this section, we establish uniform (with respect to 
 small) energy estimates, which are the essen-
tial ingredients in the proof of our main results. We first exhibit in Section 3.1 some properties of the
system obtained after the change of variables (1.7)–(1.8), and which allow the L2 energy estimate of
Proposition 3.5 (Section 3.2) and in turn the Hs energy estimate of Proposition 3.8 (Section 3.3).

3.1. A new formulation

In what follows, we fix h0 > 0 and always assume that

∀n ∈ {1, . . . , N}, hn
def= δn + ζn − ζn+1 � h0 > 0 (3.1)

(recall the convention: ζN+1 = 0). More precisely, we work with Vh0 ⊂ RN(1+d) defined by

Vh0 = {(
−1ζ1, ζ2, . . . , ζN, �, . . . , �
)� ∈ RN(1+d) such that (3.1) holds

}
.

Consequently, the change of variables (1.7)–(1.8) define self-homeomorphisms between

U
def= (
−1ζ1, ζ2, . . . , ζN, ux

1, . . . , u
x
N, u

y

1, . . . , u
y

N

)� ∈ Vh0 and

V
def= (
−1ζ1, ζ2, . . . , ζN, vx

2 , . . . , vx
N , wx, v

y

2 , . . . , v
y

N, wy
)� ∈ Vh0,

and we denote

F :
{
Vh0 → Vh0

V �→ U
def= F(V)

and F−1 :
{
Vh0 → Vh0

U �→ V
def= F−1(U).

Consider the Jacobian matrix associated to F−1:

JF−1[U] def=
⎛⎝ IN 0N 0N

C(ux) 	h(ζ ) 0N

C(uy) 0N 	h(ζ )

⎞⎠ , (3.2)

where

	h(ζ ) =

⎛⎜⎜⎜⎝
−γ1 γ2 (0)

. . .
. . .

(0) −γN−1 γN

h1 · · · · · · hN

⎞⎟⎟⎟⎠ and C(u) =

⎛⎜⎜⎝ (0)


u1 u2 − u1 · · · uN − uN−1

⎞⎟⎟⎠ .
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From the inverse function theorem, one has

JF [V] = (JF−1[
F(V)
])−1

(3.3)

and

(
JF−1[U])−1 =

⎛⎜⎝ IN 0N 0N

−	h(ζ )−1C(ux) 	h(ζ )−1 0N

−	h(ζ )−1C(uy) 0N 	h(ζ )−1

⎞⎟⎠ ,

where (as is easier seen directly from (1.8)),

(
	h(ζ )−1

)
n,j

= γ −1
n∑N

i=1 γ −1
i hi

αn,j+1 with αn,j =

⎧⎪⎨⎪⎩
1 if j = N + 1,∑j−1

i=1 γ −1
i hi if 2 � j � n,

−∑N
i=j γ −1

i hi otherwise.

Applying the change of variables U = F(V) in (2.1) yields, for sufficiently regular functions (see
Lemma 4.1 below),

∂tV + 1



Bx[V] ∂xV + 1



By[V] ∂xV = 0, (3.4)

which we can identify with (1.9), and where Bx[V], By[V] are explicitly given in terms of Ax[V], Ay[V]
(displayed in (2.2)) and JF [V] through

Bx[V] = (JF [V])−1
Ax
[
F(V)
]
JF [V] and By[V] = (JF [V])−1

Ay
[
F(V)
]
JF [V]. (3.5)

Finally, we denote by �f, �x
f the orthogonal projection onto the “fast” variables, namely

�f
def=
⎛⎝ D(e1) 0N 0N

0N D(eN) 0N

0N 0N D(eN)

⎞⎠ , �x
f

def=
⎛⎝ D(e1) 0N 0N

0N D(eN) 0N

0N 0N 0N

⎞⎠ , (3.6)

with D(e1)
def= diag(1, 0, . . . , 0) and D(eN)

def= diag(0, . . . , 0, 1).
The following result is now straightforward.

Lemma 3.1. Let U = F(V) ∈ Vh0 , and recall the definition of Q(ξ) in (2.6). Then

∀ξ ∈ Rd \ {0}, Q(ξ)F (V) = F
(
Q(ξ)V
)

and Q(ξ)JF [V] = JF
[
Q(ξ)V
]
Q(ξ). (3.7)

Moreover, JF [V], (JF [V])−1 : Vh0 → MN(1+d)(R) are well-defined and smooth and satisfy∣∣F(V)
∣∣ � C
(
m, h−1

0 , |V|)|V|, ∣∣F−1(U)
∣∣ � C
(
m, h−1

0 , |U|)|U|; (3.8a)∥∥JF [V]∥∥ � C
(
m, h−1

0 , |V|), ∥∥(JF [V])−1∥∥ � C
(
m, h−1

0 , |V|); (3.8b)∥∥JF [V] − JF
[
(Id − �f)V

]∥∥ � 
C
(
m, h−1

0 , |V|)|V|. (3.8c)
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Proof. Only the last estimate requires an explanation. Remark that the first variable of V contributes to
	h(ζ )−1 only through h1 = δ1 − ζ2 + 


ζ1



. Thanks to the 
 prefactor, one deduces that∥∥	h(ζ )−1 − 	h

(
(Id − �f)ζ

)−1∥∥ � 
C
(
m, h−1

0 , |ζ |)|ζ1|,

where we denoted (Id − �f)ζ
def= (0, ζ2, . . . , ζN)�. Similarly, by (1.7), one has

ui − ui−1 = vi + (1 − γi)ui + (1 − γi−1)ui−1

and, by definition, 1 − γi = 
2
∑N

j=i+1 rj , so that∥∥C(u(V)
)− C
(
u
(
(Id − �f)V

))∥∥ � 
C
(
m, h−1

0 , |V|)|V|,
where u(V) represents the velocity variables of F−1(V), as given by (1.8). The result is now clear. �

Lemma 3.2. The functions Bx, By : Vh0 → MN(1+d)(R) are well-defined and smooth and satisfy the
rotational invariance

∀ξ ∈ Rd \ {0}, B[V, ξ ] def= ξxBx[V] + ξyBy[V] = Q(ξ)−1Bx
[
Q(ξ)V
]
Q(ξ)|ξ |; (3.9)

as well as the following estimates:∥∥Bx[V]∥∥ � C
(
m, h−1

0 , |V|), ∥∥(Id − �x
f

)
Bx[V]∥∥ � 
C

(
m, h−1

0 , |V|); (3.10a)∥∥Bx[V1] − Bx[V2]
∥∥ � 
C

(
h−1

0 ,m, |V1|, |V2|
)|V1 − V2|. (3.10b)

Proof. Identity (3.9) is deduced from (3.5), (2.5) and (3.7):

ξxBx[V] + ξyBy[V] = (JF [V])−1(
ξxAx
[
F(V)
]+ ξyAy

[
F(V)
])

JF [V]
= (JF [V])−1

Q(ξ)−1Ax
[
Q(ξ)F (V)

]
Q(ξ)JF [V]|ξ |

= Q(ξ)−1
(
JF
[
Q(ξ)V
])−1

Ax
[
F
(
Q(ξ)V
)]

JF
[
Q(ξ)V
]
Q(ξ)|ξ |

= Q(ξ)−1Bx
[
Q(ξ)V
]
Q(ξ)|ξ |.

Estimates (3.10) may be deduced from identity (3.5) and the explicit expressions of Ax[F(V)] and
JF [V], (JF [V])−1 given in (2.2), (3.2), (3.3). They are also apparent when identifying (3.4) with (1.9). In
particular, one immediately sees that the evolution equations for ζ2, . . . , ζN, v2, . . . , vN are non-singular
(for 
 small), and the singular term on the evolution equation for wy involves only ∂yζ1, so that∥∥∥∥1




(
Id − �x

f

)
Bx[V]
∥∥∥∥ � C
(
m, h−1

0 , |V|)
and ∥∥∥∥1




(
Id − �x

f

)
Bx[V1] − 1




(
Id − �x

f

)
Bx[V2]
∥∥∥∥ � C
(
h−1

0 ,m, |V1|, |V2|
)|V1 − V2|.
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The only singular terms (for 
 small) arise from the first and last equations, which read

∂t

(

−1ζ1
)+ 
−1∇ · w = 0 and ∂tw +

(
N∑

j=1

γ −1
j hj

)

γ1

1 − γ1
∇(
−1ζ1

) = rx
1 [V] ∂xV + r

y

1 [V] ∂yV,

where rx
1 , r

y

1 are smooth and enjoy the same estimates as 1


(Id − �f)Bx above. We now only need to

remark that 
γ1
1−γ1

= γ1

−1 (by definition) and, since 1 − γi = 
2

∑N
j=i+1 rj ,

N∑
j=1

γ −1
j hj =

N∑
j=1

hj +
N∑

j=1

1 − γj

γj

hj =
N∑

j=1

δj + 

(

−1ζ1
)+ 
2r2(V),

where, again, r2 is smooth and uniformly estimated as above. Lemma 3.2 is now straightforward. �

Finally, let us provide some estimates on the symbolic symmetrizer of the system.

Lemma 3.3. There exists Tx : Vh0 → MN(1+d)(R) a smooth function such that

∀V ∈ Vh0,
(
Tx[V])� = Tx[V] and

(
Tx[V]Bx[V])� = Tx[V]Bx[V].

Moreover, one can set 
−1
0 , ν = C(m, h−1

0 , |V|) > 0 such that if 
 ∈ (0, 
0) and V, V1, V2 satisfy

∀n ∈ {2, . . . , N}, sup
x∈Rd

∣∣vx
n

∣∣+ ∣∣vy
n

∣∣ < ν−1, (3.11)

then one has the following estimates:

c0Id � Tx[V], ∥∥Tx[V]∥∥ � C0, with c−1
0 = N(1 + d), C0 = C

(
m, h−1

0 , |V|); (3.12a)∥∥Tx[V1] − Tx[V2]
∥∥+ 1




∥∥(Tx[V1] − Tx[V2]
)
�x

f

∥∥ � C
(
h−1

0 ,m, |V1|, |V2|
)|V1 − V2|; (3.12b)∥∥Tx[V1] − Tx[V2]

∥∥ � C
(
h−1

0 ,m, |V1|, |V2|
)(∣∣(Id − �f)(V1 − V2)

∣∣+ 
|V1 − V2|
)
. (3.12c)

Proof. One could define the symmetrizer as Tx[V] = (JF [V])�Sx[F(V)]JF [V], where Sx[F(V)] is the
symmetrizer associated with Ax[F(V)] and has been displayed in (2.7), and check the properties directly
on this explicit symmetrizer. Some of the estimates, however, rely on delicate cancellations which have
no obvious explanation using this method. This is why we find it more instructive to construct our
symmetrizer using the spectral properties of our system, whose study we postpone to Appendix B for
the sake of readability. It is proved in Lemmas B.1 and B.3 that Bx[V] has only real and semisimple
eigenvalues:

1



Bx[V] =

N∑
n=1

μn[V]Pn[V] + μ−n[V]P−n[V] + ux
n[V]P0

n[V],
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where μ±n[V], ux
n[V] ∈ R, and P±n[V], P0

n[V] are rank-one spectral projections. We now define

Tx[V] =
N∑

n=1

(
Pn[V])�Pn[V] + (P−n[V])�P−n[V] + (P0

n[V])�P0
n[V]. (3.13)

Indeed, Tx[V] is obviously symmetric, and so is

1



Tx[V]Bx[V] =

N∑
n=1

μn[V](Pn[V])�Pn[V] + μ−n[V](P−n[V])�P−n[V] + ux
n[V](P0

n[V])�P0
n[V],

and one has for any W ∈ RN(1+d),

(
Tx[V]W, W

) = N∑
n=1

∣∣Pn[V]W∣∣2 + ∣∣P−n[V]W∣∣2 + ∣∣P0
n[V]W∣∣2 � 1

(N(1 + d))2
|W|2.

The upper bound in (3.12a) follows from

N∑
n=1

∥∥Pn[V]∥∥+ ∥∥P−n[V]∥∥+ ∥∥P0
n[V]∥∥ � C

(
m, h−1

0 , |V|),
which is given by (3.8b) in Lemma 3.1 with (B.1) in Lemma B.1, and (B.2c) in Lemma B.2 with (B.3c)–
(B.3e) in Lemma B.3. This proves (3.12a).

Similarly, (3.12b) and (3.12c) are easily deduced from the explicit expression for P0
n in (B.1), and the

estimates (B.3c), (B.3d), (B.3e) as well as (B.2e). �

We conclude this section by collecting the above information on the symbols of our operators:

Corollary 3.4. Let V ∈ Vh0 satisfying (3.11) and ξ = (ξx, ξy)� ∈ Rd \ {0}, define

B[V, ξ ] def= ξxBx[V] + ξyBy[V] = Q(ξ)−1Bx
[
Q(ξ)V
]
Q(ξ)|ξ |;

T[V, ξ ] def= Q(ξ)−1Tx
[
Q(ξ)V
]
Q(ξ) and Pf(ξ)

def= Q(ξ)−1�x
f Q(ξ).

Then one has (T[V, ξ ])� = T[V, ξ ], (T[V, ξ ]B[V, ξ ])� = T[V, ξ ]B[V, ξ ] and the following estimates:∥∥B[V, ξ ]∥∥ � C0|ξ | and
∥∥(Id − Pf(ξ)

)
B[V, ξ ]∥∥ � 
C0|ξ |; (3.14a)

c0Id � T[V, ξ ] and
∥∥T[V, ξ ]∥∥ � C0; (3.14b)

with c−1
0 = N(1 + d), C0 = C(m, h−1

0 , |V|); and for any V1, V2 ∈ Vh0 satisfying (3.11), one has∥∥B[V1, ξ ] − B[V2, ξ ]∥∥ � 
C1|V1 − V2||ξ |; (3.14c)∥∥T[V1, ξ ]B[V1, ξ ] − T[V2, ξ ]B[V2, ξ ]∥∥ � 
C1|V1 − V2||ξ |; (3.14d)
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(∣∣(Id − �f)(V1 − V2)

∣∣+ 
|V1 − V2|
); (3.14e)∥∥(T[V1, ξ ] − T[V2, ξ ])Pf(ξ)

∥∥ � 
C1|V1 − V2|, (3.14f)

with C1 = C(h−1
0 ,m, |V1|, |V2|).

3.2. L2 energy estimate

The following proposition shows that, thanks to the structure of the system exhibited in the previous
section, one is able to control the (L2) energy of solutions, uniformly on a time interval independent of

 small. This is the key ingredient in the proof of our main results.

Proposition 3.5. Let V ∈ W
1,∞
t,x ((0, T ) × Rd)N(1+d) satisfying (3.1), (3.11) with h0, ν > 0, and W ∈

C0([0, T );L2(Rd))N(1+d), R ∈ L1(0, T ;L2(Rd))N(1+d) be such that for any t ∈ [0, T ), one has

∂tW + 1



Bx[V] ∂xW + 1



By[V] ∂yW = R. (3.15)

One can set 
−1
0 , ν0 = C(m, h−1

0 , ‖V‖L∞((0,T )×Rd )) such that if 
 ∈ (0, 
0) and ν � ν0, then

|W|L2(t) � C0(0)eC1|||V|||t |W|t=0|L2 +
∫ t

0
eC1|||V|||(t−t ′)C0

(
t ′
)|R|L2

(
t ′
)

dt ′, (3.16)

with C0(t) = C(m, h−1
0 , |V|W 1,∞(t)), C1 = C(m, h−1

0 , ‖V‖L∞((0,T )×Rd )) and

|||V||| def= ‖V‖L∞(0,T ;W 1,∞) + 
‖∂tV‖L∞((0,T )×Rd ) + ∥∥(Id − �f) ∂tV
∥∥

L∞((0,T )×Rd )
.

This section is dedicated to the proof of this result. The main ingredients are the properties of the
symbol of system (3.15) as well as its symmetrizer, collected in Corollary 3.4. Energy estimates for such
symmetrizable systems can be obtained thanks to Bony’s paradifferential calculus associated with these
symbols; see [29]. We shall however be cautious as paradifferential calculus typically provides estimates
“up to lower order operators”: while this is sufficient for regularity aspects, this could induce order-zero
but large (namely non uniformly bounded with respect to 
 small) remainder terms, preventing the
desired uniform energy control stated in (3.16).

This is why we decompose the symbols into a first order contribution which admits a natural quanti-
zation as a Fourier multiplier, whereas only second-order contributions will be paradifferentialized. Let
us be more specific. Define

δB(t, x, ξ)
def= χ(ξ)δBx

[
Q(ξ)V(t, x)

]|ξ | def= χ(ξ)
(
Bx
[
Q(ξ)V(t, x)

]− Bx[0])|ξ |,

where χ is a smooth non-negative cut-off function (χ(ξ) = 0 for |ξ | � 1/2 and χ(ξ) = 1 for |ξ | � 1);
and let TiδB be the associated paradifferential operator (see Definition A.2). Similarly, define

δT(t, x, ξ)
def= χ(ξ)δTx

[
Q(ξ)V(t, x)

] def= χ(ξ)
(
Tx
[
Q(ξ)V(t, x)

]− Tx[0])
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and TδT the associated paradifferential operator; and

S(t)
def= (Q(D)

)−1
(

Tx[0] + 1

2

(
TδT + T �

δT

)+ λ
−1



)
Q(D), (3.17)

where 
−1

 = (Id + |D|2)−1/2((Id − �x

f ) + 
�x
f ) and λ > 0 will be determined later on.

We claim in Lemma 3.6, below, that the properties on T[V, ξ ] given in Corollary 3.4 are sufficient to
show that S(t) is a uniformly bounded and coercive operator, and show a precise estimate on its time
derivative, S ′(t). In Lemma 3.7, we then rewrite (3.15) as a symmetric, paradifferential equation, from
which the energy estimate (3.16) is easily deduced.

Lemma 3.6. Let V be as in Proposition 3.5 and fix t ∈ [0, T ). Then S(t) : L2 → L2, defined by (3.17),
is self-adjoint and one can set λ0 = C(m, h−1

0 , |V|W 1,∞) and ν0, 

−1
0 = C(m, h−1

0 , |V|L∞), such that if
λ � λ0 and ν � ν0, 
 ∈ (0, 
0), then one has

∀W ∈ L2
(
Rd
)N(1+d)

,
c0

2
|W|2

L2 �
(
S(t)W, W

)
L2 and

∣∣S(t)W
∣∣
L2 � C0|W|L2, (3.18)

where c−1
0 = N(1 + d), C0 = C(m, h−1

0 , |V|W 1,∞). Moreover, S ′(t) : L2 → L2 is well-defined and one
has

∀W ∈ L2
(
Rd
)N(1+d)

,
∣∣S ′(t)W

∣∣
L2 � C ′

0

(∣∣(Id − �f) ∂tV
∣∣
L∞ + 
|∂tV|L∞

)|W|L2, (3.19)

where C ′
0 = C(m, h−1

0 , |V|L∞).

Proof. That S(t) is self-adjoint is obvious (recall in particular that Q(ξ) is orthogonal). Let us now
decompose

Q(D)S
(
Q(D)
)−1 = Tx[Z] + 1

2

(
TδT(1)

+ T �
δT(1)

)+ λ
−1



+ 1

2

(
TδT(2)

+ T �
δT(2)

)− χ(D)1/2
(
Tx[Z] − Tx[0])χ(D)1/2

+ χ(D)1/2
(
Tx[Z] − Tx[0])χ(D)1/2 − (Tx[Z] − Tx[0])

def= Tx[Z] + S(1) + λ
−1

 + S(2) + S(r),

where Z is obtained from V by setting to zero all nth entries with n � N + 1, and (notice Q(ξ)Z = Z)

δT(1)(t, x, ξ)
def= χ(ξ)

(
Tx
[
Q(ξ)V(t, x)

]− Tx
[
Q(ξ)Z
])

,

δT(2)(t, x, ξ)
def= χ(ξ)

(
Tx[Z] − Tx[0]).

Using (3.14b) in Corollary 3.4, we can define C0 = C(m, h−1
0 , |Z|L∞) such that

∀W ∈ L2
(
Rd
)N(1+d)

, c0|W|2
L2 �
(
Tx[Z]W, W

)
L2 and |Tx[Z]W|L2 � 1

2
C0|W|L2 .
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By (3.14e) in Corollary 3.4 and since V satisfies (3.11), one has for any (t, x, ξ) ∈ [0, T )×Rd ×Rd \{0},∥∥Tx
[
Q(ξ)V(t, x)

]− Tx
[
Q(ξ)Z(t, x)

]∥∥ � C
(
m, h−1

0 ,
∣∣V(t, x)

∣∣)(ν−1 + 

∣∣V(t, x)

∣∣).
Similarly, the Lipschitz estimate (3.14e) yields for any |α| � 2 and (t, x, ξ) ∈ [0, T ) × Rd × Rd ,

sup
x∈Rd

∥∥∂α
ξ δT(1)(t, x, ξ)

∥∥ � C
(
m, h−1

0 , |V|L∞, α
)(

ν−1 + 
|V|L∞
)(

1 + |ξ |)−|α|
,

so that the contribution from S(1) is estimated thanks to Proposition A.3 (item (i)) as follows:

‖S(1)‖L2→L2 � C
(
m, h−1

0 , |V|L∞
)(

ν−1 + 
|V|L∞
)
.

Similarly, using (3.14f) in Corollary 3.4 yields, uniformly in t ∈ [0, T ),

∥∥Tx[Z] − Tx[0]∥∥
W 1,∞ + 1




∥∥(Tx[Z] − Tx[0])�x
f

∥∥
W 1,∞ � C

(
h−1

0 ,m, |V|L∞
)|V|W 1,∞;

and one obtains identically the corresponding estimates for derivatives with respect to ξ . Thus Proposi-
tions A.3 and A.4 yield for any W ∈ L2(Rd)N(1+d),

|S(2)W|L2 + 1




∣∣S(2)�
x
f W
∣∣
L2 � C

(
m, h−1

0 , |V|L∞
)|V|W 1,∞|W|H−1 .

One easily checks that the last contribution satisfies the same estimate:

|S(r)W|L2 + 1




∣∣S(r)�
x
f W
∣∣
L2 � C

(
m, h−1

0 , |V|L∞
)|V|W 1,∞|W|H−1 .

Here, we used that for scalar functions v ∈ W 1,∞(Rd) and w ∈ H−1(Rd), one has

|vw|H−1 � C(d)|v|W 1,∞|w|H−1, (3.20)

where C(d) is a universal constant (by duality, since for any ϕ ∈ H 1, one has vϕ ∈ H 1 and
〈w, vϕ〉H−1−H 1 � C|w|H−1 |v|W 1,∞|ϕ|H 1 ).

Thanks to the above estimates, one may choose λ � λ0 = C(m, h−1
0 , |V|L∞)|V|W 1,∞ sufficiently large

so that one has

∀W ∈ L2
(
Rd
)N(1+d)

,
(
(S(2) + S(r))W, W

)
L2 + λ
(

−1


 (D)W, W
)
L2 � 0.

It is now clear (using that Q(ξ) is orthogonal for ξ ∈ Rd \ {0}) that one can restrict 
, ν, λ as in the
statement so that (3.18) holds.

As for the second part of the statement, by definition of the quantization T (see Definition A.2) and
since ∂t commutes with constant operators and Fourier multipliers, one has

Q(D)S ′(t)
(
Q(D)
)−1 = 1

2

(
T∂t (δT) + T �

∂t (δT)

)
.
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Moreover, using (3.14e) in Corollary 3.4, one has∥∥∂t

(
Tx
[
V(t, x)
])∥∥ � C

(
m, h−1

0 ,
∣∣V(t, x)

∣∣)(∣∣(Id − �f) ∂tV(t, x)
∣∣+ 

∣∣∂tV(t, x)

∣∣).
Again, one easily obtains the corresponding estimates for derivatives with respect to ξ and Proposi-
tion A.3 (item (i)) yields∥∥S ′(t)

∥∥
L2→L2 � C

(
m, h−1

0 , |V|L∞
)(∣∣(Id − �f) ∂tV

∣∣
L∞ + 
|∂tV|L∞

)
.

Estimate (3.19) is proved, and the proof of Lemma 3.6 is complete. �

Lemma 3.7. Let V, W, R be as in Proposition 3.5 and λ, 
, ν as in Lemma 3.6. Then one has

S∂tW + (Q(D)
)−1
(

i
1



Tx[0]Bx[0]|D| + Ti�

)
Q(D)W = R[V, W, R], (3.21)

where

�(t, x, ξ) = 1



χ(ξ)
(
Tx
[
Q(ξ)V(t, x)

]
Bx
[
Q(ξ)V(t, x)

]− Tx[0]Bx[0])|ξ |,

and R[V, W, R] ∈ L1(0, T ;L2(Rd))N(1+d) satisfies∣∣R[V, W, R]∣∣
L2(t) � C0|R|L2(t) + C1|W|L2(t)

with C0 = C(m, h−1
0 , |V|W 1,∞), C1 = C(m, h−1

0 , |V|L∞) × |V|W 1,∞ . Moreover, one has

∀t ∈ [0, T ),
∣∣�(Ti�W, W)L2

∣∣ � C
(
m, h−1

0 , |V|L∞
)|V|W 1,∞|W|2

L2 .

Proof. Notice first that, using the rotational invariance property (3.9), one has

Bx[0] ∂xW + By[0] ∂yW = i
(
Q(D)
)−1

Bx[0]Q(D)|D|W.

Thus applying the operator S to (3.15) yields (3.21) with

R[V, W, R] def= SR + (Q(D)
)−1Ti�Q(D)W

− (Q(D)
)−1
(

1

2

(
TδT + T �

δT

)+ λ
−1

 (D)

)
Q(D)

(
1



Bx[V] ∂xW + 1



By[V] ∂yW

)
− (Q(D)

)−1
Tx[0]Q(D)

(
1




(
Bx[V] − Bx[0]) ∂xW + 1




(
By[V] − By[0]) ∂yW

)
.

(3.22)
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We first note that, using estimate (3.14a) in Corollary 3.4 yields immediately

1




∣∣
−1

 (D)Q(D)

(
Bx[0] ∂xW + By[0] ∂yW

)∣∣
L2 = 1




∣∣
−1

 (D)Bx[0]Q(D)

∣∣D|W|L2

� C
(
m, h−1

0 , λ
)|W|L2 .

We then deduce from estimate (3.14c) in Corollary 3.4 that

∥∥Bx[V] − Bx[0]∥∥
W 1,∞ + ∥∥By[V] − By[0]∥∥

W 1,∞ � 
C
(
h−1

0 ,m, |V|L∞
)|V|W 1,∞;

and in turn, by (3.20),

∀t ∈ [0, T ),

∣∣∣∣
−1

 (D)Q(D)

(
1



Bx[V] ∂xW+ 1



By[V] ∂yW

)∣∣∣∣
L2

� C
(
m, h−1

0 , |V|L∞
)|V|W 1,∞|W|L2 .

Thus there only remains to estimate

R(1)[V, W] def= (Q(D)
)−1Ti�(1)

Q(D)W

− 1

2

(
Q(D)
)−1(TδT + T �

δT

)
Q(D)

(
1



Bx[V] ∂xW + 1



By[V] ∂yW

)
,

R(2)[V, W] def= (Q(D)
)−1Ti�(2)

Q(D)W

− (Q(D)
)−1

Tx[0]Q(D)

(
1




(
Bx[V] − Bx[0]) ∂xW + 1




(
By[V] − By[0]) ∂yW

)
,

where

�(1)(t, x, ξ)
def= 1



δT(t, x, ξ)Bx

[
Q(ξ)V
]

and �(2)(t, x, ξ)
def= 1



Tx[0]δB(t, x, ξ).

These terms are estimated exactly as in the proof of Lemma 3.6, i.e. using the paradifferential cal-
culus of Propositions A.3 and A.4 together with the estimates of Corollary 3.4, thus we do not de-
tail. Let us just indicate why these contributions are uniformly bounded with respect to 
 small. The
case of R(2)[V, W] is quickly settled by (3.14c) in Corollary 3.4. As for R(1)[V, W], we decompose as
above

1



Bx[V] = 1



Bx[0] + 1




(
Bx[V] − Bx[0]).

The contribution from the second component is uniformly bounded with respect to 
 small, again thanks
to (3.14c) in Corollary 3.4. The contribution from the first component may also be uniformly bounded
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by remarking that∥∥δT(t, x, ξ)Bx[0]∥∥ �
∥∥(δT(t, x, ξ)�f

)
Bx[0]∥∥+ ∥∥δT(t, x, ξ)

(
(Id − �f)B

x[0])∥∥
� 
 × C

(
m, h−1

0 , |V|)|V|,

where we used (3.14a), (3.14e) and (3.14f) in Corollary 3.4.
Altogether, one estimates R in (3.22) as desired, namely∣∣R[V, W, R]∣∣

L2 � C0|R|L2 + C1|W|L2,

with C0 = C(m, h−1
0 , |V|W 1,∞), C1 = C(m, h−1

0 , |V|L∞) × |V|W 1,∞ .
There remains to estimate �(Ti�W, W)L2 . By (3.14d) in Corollary 3.4, one has

∀(t, ξ) ∈ [0, T ) × Rd,
∥∥�(t, ·, ξ)

∥∥
W 1,∞ � χ(ξ)|ξ |C(m, h−1

0 , |V|L∞
)|V|W 1,∞,

and �(t, x, ξ) is symmetric. Proposition A.3 (items (ii) and (iii)) as well as Proposition A.4 yield

∀t ∈ [0, T ),
∣∣�(Ti�W, W)L2

∣∣ � C
(
m, h−1

0 , |V|L∞
)|V|W 1,∞|W|2

L2 .

The proof of Lemma 3.7 is complete. �

Completion of the proof. Assume W is sufficiently regular, say W ∈ C1([0, T );H 1(Rd))N(1+d), so that
all the calculations below are well-defined. We compute the L2 inner-product of identity (3.21) with W:
it follows

1

2

d

dt
(SW, W)L2 � 1

2

∣∣([∂t ,S]W, W
)
L2

∣∣+ 1

2

∣∣∣∣�(i 1




(
Q(D)
)−1

Tx[0]Bx[0]Q(D)|D|W, W

)∣∣∣∣
+ ∣∣�(Ti�W, W)L2

∣∣+ ∣∣(R[R, V, W], W
)
L2

∣∣.
The second term on the right-hand-side is identically zero since Tx[0]Bx[0] is symmetric. The other

terms are estimated thanks to Cauchy–Schwarz inequality and Lemmata 3.6 and 3.7. Altogether, this
shows that provided we restrict 
 ∈ (0, 
0) and ν � ν0 as in Lemma 3.6, one has

1

2

d

dt
(SW, W)L2 � C1|W|2

L2 + ∣∣R[R, V, W]∣∣
L2 |W|L2, (3.23)

with C1 = C(m, h−1
0 , |V|L∞) × (|V|W 1,∞ + 
|∂tV|L∞ + |(Id − �f) ∂tV|L∞). Estimate (3.16) follows

from Gronwall’s lemma and the coercivity of S, i.e. (3.18) in Lemma 3.6, together with the con-
trol of R ∈ L1(0, T ;L2) provided in Lemma 3.7. The fact that the same estimate holds for general
W ∈ C0([0, T );L2(Rd))N(1+d) solution to (3.15) may be obtained by density and thanks to a standard
regularization process; see [29, Theorem 7.1.11]. Proposition 3.5 is proved.
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3.3. Hs energy estimate

The L2 energy estimate derived in Proposition 3.5 quickly induces a similar Hs estimate, for any
s > d/2 + 1, by using once more the specific structure of our system of equations, namely that singular
terms appear only as linear components of the system (3.4).

Proposition 3.8. Let s > d/2 + 1 and V, W ∈ C0([0, T );Hs(Rd))N(1+d) be such that V satisfies (3.1),
(3.11) with h0, ν > 0 and ∂tV ∈ L∞((0, T ) × Rd)N(1+d), and

∂tW + 1



Bx[V] ∂xW + 1



By[V] ∂yW = R,

with R ∈ L1(0, T ;Hs(Rd))N(1+d). Assume that 
 ∈ (0, 
0) and ν � ν0 with 
0, ν0 as in Proposition 3.5.
Then one has, for any t ∈ [0, T ),

|W|Hs (t) � C0(0)eC1|||V|||s t |W|t=0|L2 +
∫ t

0
eC1|||V|||s (t−t ′)C0

(
t ′
)|R|Hs

(
t ′
)

dt ′, (3.24)

with C0(t) = C(m, h−1
0 , ‖V‖L∞(0,t;W 1,∞)), C1 = C(m, h−1

0 , ‖V‖L∞(0,T ;Hs)) and

|||V|||s def= ‖V‖L∞(0,T ;Hs) + 
‖∂tV‖L∞((0,T )×Rd ) + ∥∥(Id − �f) ∂tV
∥∥

L∞((0,T )×Rd )
.

Proof. Denote Ws = 
sV ∈ C0([0, T );L2(Rd))N(1+d), with 
s = (Id − 	)s/2. Then one has

∂tW
s + 1



Bx[V] ∂xWs + 1



By[V] ∂yWs = 
sR +

[

s,

1



Bx[V]
]

∂xW +
[

s,

1



By[V]
]

∂xW.

(3.25)

We shall apply Proposition 3.5 to the above system, thanks to the standard tools on Sobolev spaces
recalled in Section A.2. Notice first that since s > d/2 + 1, Sobolev embedding yields

|V|W 1,∞ � C|V|Hs ,

so that we only need to estimate the commutator on the right-hand-side of (3.25) to apply Proposition 3.5.
Since 
s commutes with Bx[0], one has[


s,
1



Bx[V]
]

∂xW = 1




[

s, Bx[V] − Bx[0]] ∂xW.

Now, thanks to the product and commutator estimates recalled in Section A.2, and following the proof
of Lemma 3.2, one easily checks that, for any t ∈ [0, T ),∣∣∣∣[
s,

1



Bx[V]
]

∂xW

∣∣∣∣
L2

= 1




∣∣[
s, Bx[V] − Bx[0]] ∂xW
∣∣
L2 � C

(
m, h−1

0 , |V|Hs

)|V|Hs |∂xW|Hs−1 .
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Obviously, since By[V] = Q((0, 1))−1Bx[Q((0, 1))V]Q((0, 1)) (by (3.9) ), one has∣∣∣∣[
s,
1



By[V]
]

∂yW

∣∣∣∣
L2

� C
(
m, h−1

0 , |V|Hs

)|V|Hs |∂yW|Hs−1 .

One could apply the L2 estimate of Proposition 3.5 to V, Ws , 
sR satisfying (3.25), but one obtains
a slightly stronger result by stepping back and using directly the differential inequality of the proof,
namely (3.23):

1

2

d

dt

(
SWs, Ws

)
L2 � C1

∣∣Ws
∣∣2
L2 + ∣∣R[R, V, W]∣∣

L2

∣∣Ws
∣∣
L2,

with C1 = C(m, h−1
0 , |V|L∞) × (|V|W 1,∞ + 
|∂tV|L∞ + |(Id − �f) ∂tV|L∞), and∣∣R[R, V, W]∣∣
L2 � C0|R|Hs + Cs |W|Hs ,

where C0 = C(m, h−1
0 , |V|W 1,∞), and Cs = C(m, h−1

0 , |V|Hs )|V|Hs .
Estimate (3.24) follows from Gronwall’s lemma and the coercivity of S, i.e. (3.18) in Lemma 3.6.

Again, this estimate is proved for sufficiently regular Ws = 
sW, but may be extended to general
Ws ∈ C0([0, T );L2(Rd))N(1+d) solution to (3.25) by density and thanks to a standard regularization
process. This concludes the proof of Proposition 3.8. �

4. Well-posedness and stability estimates

In this section, we collect the information gathered in the previous sections, which quickly yield
Theorem 1.1, as well as the propagation of well-prepared initial data (see Proposition 4.2).

Let us first recall that Proposition 2.1 offers the existence and uniqueness of a (maximal) solution to
(1.4), for sufficiently regular initial data. Our results give additional information on the large time be-
haviour of these solutions, using in particular the energy estimates of Propositions 3.5 and 3.8. These es-
timates, however, are based on a different formulation of the equations, namely (1.9), which we claimed
to be equivalent. Let us precisely state below in which sense.

Lemma 4.1. Let U
def= (
−1ζ1, ζ2, . . . , ζN, ux

1, . . . , u
x
N, u

y

1, . . . , u
y

N)� ∈ C0([0, T );Hs(Rd))N(1+d) with

s > d/2 + 1, satisfying (3.1). Then V
def= (
−1ζ1, ζ2, . . . , ζN, vx

2 , . . . , vx
N, wx, v

y

2 , . . . , v
y

N, vy)�, defined
by (1.7), satisfies V ∈ C0([0, T );Hs(Rd))N(1+d) and

|V|Hs � C
(
m, h−1

0 , |U|Hs

)|U|Hs .

Conversely, if V ∈ C0([0, T );Hs(Rd))N(1+d) satisfies (3.1), then the change of variables (1.8) defines
U ∈ C0([0, T );Hs(Rd))N(1+d) and

|U|Hs � C
(
m, h−1

0 , |V|Hs

)|V|Hs .

Moreover, if U as above is a strong solution to (2.1) (or, equivalently (1.4)), then V is a strong solution
to (3.4) (or, equivalently (1.9)); and conversely.
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Proof. Notice that U ∈ C0([0, T );Hs(Rd))N(1+d) implies immediately V ∈ C0([0, T );Hs(Rd))N(1+d)

since Hσ(Rd) is an algebra for any σ > d/2. The converse is also true since the multiplication by
(
∑N

i=1 γ −1
i hi)

−1 is continuous from Hσ(Rd) to Hσ(Rd); see Section A.2. It follows, by continuous
Sobolev embedding, that all the terms in (1.4) and (1.9) as well as in the calculations below are well-
defined in C0([0, T ) × Rd)N(1+d).

The evolution equations for vn in (1.9) are straightforwardly deduced from the ones for un in (1.4).
The evolution equation for w follows from

∂tw =
N∑

i=1

hi ∂tui + ui ∂t (ζi − ζi+1) =
N∑

i=1

hi ∂tui − ui∇ · (hiui).

Plugging the expression for ∂tui in (1.4), and using ∇ · (hiui ⊗ ui) = hi(ui · ∇)ui + ui∇ · (hiui), yields
immediately the desired expression of the evolution equation for w in (1.9).

The corresponding result concerning the compact matricial formulation of the systems, and in partic-
ular (3.5), is obvious by the chain rule.

This proves the first part of the statement. The second part is identical since all these calculations are
reversible: the Jacobian associated to the change of variables is invertible; see (3.3). �

4.1. Large time well-posedness; proof of Theorem 1.1

By Proposition 2.1, one can set ν0 = C(m, h−1
0 ) such that if (1.6) holds with ν0, then there exists a

unique U ∈ C0([0, Tmax);Hs(Rd))N(1+d) strong solution to (2.1) and U|t=0 = Uin. By Lemma 4.1, the
change of variable (1.7) defines V ∈ C0([0, Tmax);Hs(Rd))N(1+d) and V satisfies

∂tV + 1



Bx[V] ∂xV + 1



By[V] ∂yV = 0,

and |V|t=0|Hs = C(m, h−1
0 , |Uin|Hs )|Uin|Hs . Let us denote

T �(M) = sup
{
t ∈ [0, Tmax), ‖V‖L∞(0,t;Hs) � M and (1.5)–(1.6) holds with h0/2, 2ν0

}
.

We restrict our discussion below to M > |V|t=0|Hs , so that (by continuity) T �(M) > 0.
Using the system satisfied by V, (3.14a) in Corollary 3.4 as well as Sobolev embeddings, one checks

|||V|||s def= ‖V‖L∞(0,T ;Hs) + 
‖∂tV‖L∞((0,T )×Rd ) + ∥∥(Id − �f) ∂tV
∥∥

L∞((0,T )×Rd )
� C
(
m, h−1

0 , M
)
M,

for any T ∈ [0, T �(M)); recall �f is defined in (3.6).
In particular, one has for any T ∈ [0, T �(M)),

sup
(t,x)∈[0,T ]×Rd



∣∣∂t

(

−1ζ1
)∣∣+ N∑

n=2

|∂tζn| + ∣∣∂tv
x
n

∣∣+ ∣∣∂tv
y
n

∣∣ � |||V|||s � C
(
m, h−1

0 , M
)
M,

from which we deduce

∀n ∈ {1, . . . , N}, ∣∣hn(t, ·) − hn(0, ·)∣∣ � ∫ T

0
|ζn+1 − ζn| � C

(
m, h−1

0 , M
)
M × T
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and, similarly,

∀n ∈ {2, . . . , N}, ∣∣vx
n

∣∣+ ∣∣vy
n

∣∣ � ∣∣vx
n

∣∣
t=0

∣∣+ ∣∣vy
n

∣∣
t=0

∣∣+ C
(
m, h−1

0 , M
)
M × T .

It follows that, for given M , one can set ν0, 

−1
0 = C(m, h−1

0 , M) such that if 
 ∈ (0, 
0) and (1.6) holds
with ν0, then V satisfies the assumptions of Proposition 3.8 for any t ∈ [0, min{T �(M), T �(M)}) with(

T �(M)
)−1 = C

(
m, h−1

0 , M
)
M.

We thus deduce the energy estimate

∀t ∈ [0, min
{
T �(M), T �(M)

})
, |V|Hs �

(
C0(0)
∣∣Uin
∣∣
Hs + CMMt

)
eCMMt ,

with C0 = C(m, h−1
0 , |Uin|W 1,∞) and CM = C(m, h−1

0 , M). In particular this shows that one can choose
M = 2C0(0)|Uin|Hs such that

T �(M)−1 � max
{
T −1

max, C
(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs

}
.

Going back to the original variables through (1.8) and by Lemma 4.1, this shows that one can restrict
ν0 = C(m, h−1

0 , |Uin|Hs ) and the time interval [0, T ), with T −1 bounded as above, so that |U|Hs is
uniformly bounded and (2.3)–(2.4) remain satisfied. By continuity, uniqueness of the maximal solution
and thanks to the blow-up criteria in Proposition 2.1, we deduce that one can set

T −1
max � T −1 � C

(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs .

This concludes the proof of Theorem 1.1.

4.2. Propagation of well-prepared initial data

Proposition 4.2. Let s > d/2+1 and Uin ∈ Hs(Rd)N(1+d) satisfying (1.5)–(1.6) as in Theorem 1.1, and

denote U
def= (
−1ζ1, ζ2, . . . , ζN, ux

1, . . . , u
x
N, u

y

1, . . . , u
y

N)� ∈ C0([0, T );Hs(Rd))N(1+d) the solution to
(1.4) and U|t=0 = Uin. If Uin satisfies initially

∣∣Uin
∣∣
Hs + 1




∣∣∇(
−1ζ in
1

)∣∣
L2 + 1




∣∣∣∣∣
N∑

n=1

∇ · (hin
n uin

n

)∣∣∣∣∣
L2

� M0,

then there exists C0 = C(M0,m, h−1
0 ) such that

∀t ∈ [0, T ), |U|Hs + 1




∣∣∇(
−1ζ1
)∣∣

L2 + 1




∣∣∣∣∣
N∑

n=1

∇ · (hnun)

∣∣∣∣∣
L2

� C0M0 exp(C0M0t),

uniformly with respect to 
 ∈ (0, 
0).
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Proof. Let us denote by U ∈ C0([0, T );Hs(Rd))N(1+d) the solution to (1.4) and U|t=0 = Uin defined by
Theorem 1.1; and by V ∈ C0([0, T );Hs(Rd))N(1+d) the associated solution to (3.4), namely

∂tV + 1



Bx[V] ∂xV + 1



By[V] ∂yV = 0,

obtained through the change of variables (1.7) (see Lemma 4.1). Finally we denote W = ∂tV. Us-
ing the above equation and the product estimates recalled in Section A.2, one has immediately W ∈
C0([0, T );Hs−1(Rd))N(1+d) ⊂ C0([0, T ) × Rd).

Differentiating the above system of equations yields

∂tW + 1



Bx[V] ∂xW + 1



By[V] ∂yW = −1



∂t

(
Bx[V]) ∂xV − 1



∂t

(
By[V]) ∂yV.

By construction (see the proof of Theorem 1.1 above), one can restrict 
−1
0 , ν0 = C(m, h−1

0 , |Uin|Hs )

so that V satisfies the assumptions of Proposition 3.5, namely (3.1)–(3.11) for t ∈ [0, T ); and one has

‖V‖L∞(0,T ;W 1,∞) � C‖V‖L∞(0,T ;Hs) � C
(
m, h−1

0 , M0
)
M0. (4.1)

By estimate (3.14a) in Corollary 3.4, one has


‖∂tV‖L∞((0,T )×Rd ) + ∥∥(Id − �f) ∂tV
∥∥

L∞((0,T )×Rd )
� C
(
m, h−1

0 , M0
)
M0.

What is more, the additional smallness assumption on ∇ζ in
1 , ∇ · win yields

|W|t=0|L2 � C
(
m, h−1

0 , M0
)
M0,

uniformly for 
 ∈ (0, 
0).
Finally, by (3.14c) in Corollary 3.4, one has∣∣∂t

(
Bx[V]) ∂xV

∣∣
L2 + ∣∣∂t

(
By[V]) ∂yV

∣∣
L2 � 
C

(
m, h−1

0 , |V|L∞
)|V|W 1,∞|∂tV|L2 .

Altogether, after applying Proposition 3.5 with W = ∂tV, one deduces

|∂tV|L2(t) � C0M0e
C0M0t |W|t=0|L2 + C0

∫ t

0
eC0M0(t−t ′)|∂tV|L2

(
t ′
)

dt ′, (4.2)

with C0 = C(m, h−1
0 , M0). Applying Gronwall’s lemma to |∂tV|L2(t) exp(−C0M0t) yields

∀t ∈ [0, T ), |∂tV|L2(t) � C0M0 exp(C0M0t),

for C0 = C(m, h−1
0 , M0) sufficiently large.

Using again the system of equations satisfies by V, namely (1.9), estimates (4.1) and (4.2) yield

1




∣∣
−1∇ζ1

∣∣
L2 + 1



|∇ · w|L2 � C0M0 exp(C0M0t)

for C0 = C(m, h−1
0 , M0) and uniformly with 
 ∈ (0, 
0). Proposition 4.2 is proved. �
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5. Convergence results

In this section, we investigate the asymptotic behaviour of the previously obtained solutions in the
limit 
 → 0. We first show that the solutions of the free-surface system (1.4) converge weakly towards
solutions of the rigid-lid system (1.3). Strong convergence results are then obtained, first by assuming
that the initial data is well-prepared, and then by approaching the oscillatory “defect” through rapidly
propagating acoustic waves.

5.1. Weak convergence: The rigid-lid limit

Our first (weak) convergence result is the following.

Proposition 5.1. As 
 → 0, let Uin

 → Uin ∈ Hs(Rd)N(1+d) satisfying (1.5)–(1.6). Denote, for 
 suf-

ficiently small, U

def= (ζ2,
, . . . , ζN,
, u1,
, . . . , uN,
)

� ∈ C0([0, T );Hs(Rd))N(1+d)−1 the solution to
(1.4) with U
|t=0 = Uin


 . Then, as 
 → 0, U
 converges weakly (in the sense of distributions and up to a

subsequence) towards URL def= (ζ2, . . . , ζN, u1, . . . , uN)� ∈ L∞(0, T ;Hs(Rd))N(1+d)−1 a solution of the
rigid-lid system (1.3), with initial data

URL
∣∣
t=0 = (ζ in

2 , . . . , ζ in
N , uin

1 − δ−1�win, . . . , uin
N − δ−1�win

)�
,

where δ
def= ∑N

n=1 δn, win def= ∑N
n=1(δn + ζ in

n − ζ in
n+1)u

in
n with convention ζ in

1 = ζ in
N+1 = 0 and �

def=
∇	−1∇· is the orthogonal projection onto irrotational vector fields.

Proof. Restricting 
 ∈ (0, 
0) if necessary, Uin

 satisfies the hypotheses of Theorem 1.1. Thus one can

define U

def= (ζ2,
, . . . , ζN,
, u1,
, . . . , uN,
)

� ∈ C0([0, T );Hs(Rd))N(1+d) from the solution to (1.4)
with initial data U|t=0 = Uin


 ; and

‖U
‖L∞(0,T ;Hs(Rd ))N(1+d) � M,

with T −1, M = C(m, h−1
0 , |Uin|Hs )|Uin|Hs .

Thus, by Banach–Alaoglu theorem on L∞(0, T ;Hs(Rd)) = L1(0, T ;H−s(Rd))′, we can extract a
weakly converging subsequence (in the sense of distributions), that we still denote U
:

U
 ⇀ U
def= (ζ2, . . . , ζN, u1, . . . , uN)�,

with U ∈ L∞(0, T ;Hs(Rd))N(1+d).
Let us first notice that since U
 satisfies (1.4) one has, uniformly for 
 ∈ (0, 
0),

∀n ∈ {2, . . . , N}, ‖∂tζn,
‖L∞(0,T ;Hs−1(Rd )) � C
(
m, h−1

0 , M
)
M.

Thus, since the embedding of Hs−1(Rd) in Hs(Rd) is locally compact and by Aubin–Lions lemma and
Cantor’s diagonal argument, one has (again up to the extraction of a subsequence) ζn,
 → ζn strongly in
C0([0, T );Hs−1

loc ). It follows by the logarithmic convexity of Sobolev norms, that for any s ′ < s,

∀n ∈ {2, . . . , N}, ζn,
 → ζn in C0
([0, T );Hs′

loc

)
.



218 V. Duchêne / The multilayer shallow water system in the limit of small density contrast

Thereafter, we fix s ′ ∈ (1 + d/2, s) so that Hs′−1
loc ⊂ C0(R) and is an algebra. For the same reasons as

above, we have also

∀n ∈ {2, . . . , N}, un,
 − un−1,
 → un − un−1 in C0
([0, T );Hs′

loc

)d
and, using (Id − �)∇ζ1,
 ≡ 0,

∀n ∈ {1, . . . , N}, (Id − �)un,
 → (Id − �)un in C0
([0, T );Hs′

loc

)d
.

Let us now define

w

def=

N∑
n=1

(δn + ζn,
 − ζn+1,
)un,
 =
N∑

n=1

δnun,
 +
N∑

n=2

ζn,
(un,
 − un−1,
) + 

(

−1ζ1,


)
u1,
.

Notice now that all the (quadratic) nonlinear terms are strongly convergent, so that

w
 ⇀ w def=
N∑

n=1

(δn + ζn − ζn+1)un

and

(Id − �)w
 → (Id − �)w in C0
([0, T );Hs′

loc

)d
,

with convention ζ1 = ζN+1 ≡ 0. Notice also that passing to the (weak) limit in the first equation of (1.4)
yields

∇ · w = 0 and thus �w
 ⇀ 0.

We now define

ũn,

def= un,
 − δ−1�w
 with δ

def=
N∑

n=1

δn.

Notice the identity

N∑
n=1

(δn + ζn,
 − ζn+1,
)ũn,
 = w
 −
(

N∑
n=1

hn,


)
δ−1�w
 = (Id − �)w
 − 


(

−1ζ1,


)
δ−1�w


so that

w̃

def=

N∑
n=1

(δn + ζn,
 − ζn+1,
)ũn,
 → (Id − �)w in C0
([0, T );Hs′

loc

)
.
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It follows, using the formula (1.8) with ṽn,

def= γnũn,
 − γn−1ũn−1,
 = γn(un,
 − un−1,
) + 
2rnũn−1,


and w̃
, and since all the components converge strongly in C0([0, T );Hs′
loc), that ũn,
 converges strongly

as well. By virtue of uniqueness of the weak limit, one has

ũn,
 → un in C0
([0, T );Hs′

loc

)
.

We conclude by plugging the decomposition un,
 = ũn,
 + δ−1�w
 into the evolution equations for
velocities in (1.4). Notice the identity, using that δ−1�w
 is irrotational,

(un,
 · ∇)un,
 = (ũn,
 · ∇)un,
 + (un,
 · ∇)ũn,
 − (ũn,
 · ∇)ũn,
 − 1

2
∇(∣∣δ−1�w


∣∣2).
Thus the only (quadratic) term which does not involve at least one strongly convergent factor turns out to
be an exact gradient and independent of n; and so is the unbounded (linear) component of the equation,
namely 1



∇(
−1ζ1,
). This shows, passing to the weak limit all the other terms in the equation, that there

exists ∇p, independent of n, such that

∀n ∈ {1, . . . , N}, ∂tun +
n∑

i=2

ri∇ζi + (un · ∇)un = −∇p.

It is straightforward to pass to the limit in the conservation of mass equations, so that

∀n ∈ {2, . . . , N}, ∂tζn +
N∑

i=n

∇ · (hiui) = 0,

and we have already seen that ∇ · w = 0.

Thus URL def= (ζ2, . . . , ζN, u1, . . . , uN)� ∈ L∞(0, T ;Hs) ∩ C0([0, T );Hs′
loc) is a solution to (1.3),

and one checks immediately that URL|t=0 = (ζ in
2 , . . . , ζ in

N , uin
1 − δ−1�win, . . . , uin

N − δ−1�win)�. This
concludes the proof of Proposition 5.1. �

5.2. Strong convergence for well-prepared initial data

Proposition 5.2. Using the notations of Proposition 5.1, let Uin

 → Uin ∈ Hs(Rd)N(1+d) as 
 → 0, with

Uin

 well-prepared as in Proposition 4.2. Then (up to extracting a subsequence) U
 → URL strongly in

C0([0, T );Hs′
loc(R

d))N(1+d)−1, for all s ′ < s, as 
 → 0.
Moreover, ∂tun,
 ⇀ ∂tun ∈ L∞(0, T ;L2(Rd)) and 1



∇(
−1ζ1,
) ⇀ ∇pRL ∈ L∞(0, T ;L2(Rd)),

where ∇pRL is the pressure associated with URL solution to (1.3).

Proof. We follow the proof of Proposition 5.1. However, we may use additionally that, thanks to Propo-
sition 4.2 (and using the system of equations (1.4) to control time derivatives)

∥∥∂t

(

−1ζ1,


)∥∥
L2 +

N∑
n−1

‖∂tun,
‖L2 � C
(
m, h−1

0 , M0
)
M0.
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It follows (up to the extraction of a subsequence) un,
 → un and �w
 → 0 strongly in C0([0, T );L2
loc),

and therefore in C0([0, T );Hs′
loc) for s ′ < s; and ∂tun,
 ⇀ ∂tun ∈ L∞(0, T ;L2(Rd)) (in the sense of

distributions).
By Banach–Alaoglu theorem, 1



∇(
−1ζ1,
) has a weak limit in L∞(0, T ;L2(Rd)) when 
 → 0, and

passing to the weak limit in the velocity evolution equations shows that this limit is ∇pRL. �

5.3. Strong convergence for ill-prepared initial data; proof of Theorem 1.2

The proof of Theorem 1.2 is divided in three parts. We first construct a “slow mode” approximate
solution, thanks to the appropriate rigid-lid solution. We then construct a “fast mode” approximate solu-
tion, satisfying an acoustic wave equation with appropriate initial data. Finally, we show that, thanks to
dispersive estimates on the fast mode, the coupling effects between the two modes are small, so that the
superposition of the two components solves approximately the free-surface system (1.4) with appropri-
ate initial data. The energy estimate of Proposition 3.5, applied to the difference between the exact and
the approximate solution, allows to conclude.

Construction of the slow mode. Using Proposition 5.2 with well-prepared initial data

Uin



def= (0, ζ in
2 , . . . , ζ in

n , uin
1 − δ−1�win, . . . , uin

N − δ−1�win
)�

and artificially setting 
 → 0, one obtains in the limit

URL def= (ζ RL
2 , . . . , ζ RL

N , uRL
1 , . . . , uRL

N

) ∈ L∞(0, T ;Hs
(
Rd
))N(1+d)−1

a solution to (1.3) with initial data

URL
∣∣
t=0 = (ζ in

2 , . . . , ζ in
N , uin

1 − δ−1�win, . . . , uin
N − δ−1�win

)�
,

where we recall that δ
def= ∑N

n=1 δn is the total depth, win def= ∑N
n=1(δn + ζ in

n − ζ in
n+1)u

in
n with convention

ζ in
1 = ζ in

N+1 = 0 and �
def= ∇	−1∇· the orthogonal projection onto irrotational vector fields. Moreover,

the corresponding pressure satisfies ∇pRL ∈ L∞(0, T ;L2(Rd)), and one has∣∣URL
∣∣
L∞(0,T ;Hs(Rd ))

� C
(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs (5.1)

(since U
, the solutions of (1.4) with U
|t=0 = Uin from which URL is constructed, satisfy the same
estimate by Theorem 1.1).

Let us prove that one may (uniquely) choose pRL ∈ L∞(0, T ;Hs(Rd)). The regularity of URL strong
solution to (1.3) is sufficient to claim that ∇pRL ∈ L∞(0, T ;L2(Rd)) is uniquely defined by(

N∑
n=1

δn

)
	pRL +

N∑
n=1

∇ ·
(

hRL
n

(
uRL

n · ∇)uRL
n + uRL

n ∇ · (hRL
n uRL

n

)+ hRL
n

n∑
i=2

ri∇ζ RL
i

)
= 0,

where hRL
n = δn + ζ RL

n − ζ RL
n+1 with convention ζ RL

1 = ζ RL
n+1 ≡ 0. Notice now that

hRL
n

(
uRL

n · ∇)uRL
n + uRL

n ∇ · (hRL
n uRL

n

) = ∇ · (hRL
n uRL

n ⊗ uRL
n

)
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and

N∑
n=1

hRL
n

n∑
i=2

ri∇ζ RL
i =

N∑
i=2

ri∇ζ RL
i

N∑
n=i

hRL
n =

N∑
i=2

ri∇ζ RL
i

(
ζ RL
i +

N∑
n=i

δn

)
.

It follows, using that Hs(Rd) is an algebra, that there exists ϕx,x, ϕx,y, ϕy,y ∈ L∞(0, T ;Hs(Rd)) such
that

	pRL = ∂2
xϕ

x,x + ∂x ∂yϕ
x,y + ∂2

yϕ
y,y.

Thus one may define a unique solution pRL ∈ L∞(0, T ;Hs(Rd)) by Fourier analysis.2 From the product
estimates in Sobolev spaces (see Section A.2) and estimate (5.1), one has∣∣pRL

∣∣
L∞(0,T ;Hs(Rd ))

� C
(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs .

We denote Uslow def= (
pRL, ζ RL
2 , . . . , ζ RL

N , uRL
1 , . . . , uRL

N ) ∈ L∞(0, T ;Hs(Rd))N(1+d). If 
 is chosen
sufficiently small, then Uslow satisfies (1.5) and therefore the change of variables (1.7) defines Vslow

satisfying (see Lemma 4.1)∥∥Vslow
∥∥

L∞(0,T ;Hs(Rd ))
� C
(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs . (5.2)

It is easy to check, using γi = 1 − 
2
∑N

j=i+1 rj and since ∇ · (∑N
n=1 hRL

n uRL
n ) = 0, that Vslow satisfies

(1.9) up to a remainder term denoted Rslow ∈ L∞(0, T ;Hs−1(Rd)); and∣∣Rslow
∣∣
L∞(0,T ;Hs−1(Rd ))

� 
C
(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs . (5.3)

Construction of the fast mode. We constructed above an approximate solution of (1.4) (in the sense
of consistency), but which does not fulfil the required initial condition. We correct this defect through

an explicit “fast mode”. Define Vfast def= (
−1ζ ac
1 , 0, . . . , 0, wx,ac, 0, . . . , 0, wy,ac)� where 
−1ζ ac

1 and

wac def= (wx,ac, wy,ac)� solve{
∂t (


−1ζ ac
1 ) + 1



∇ · wac = 0,

∂twac + δ


∇(
−1ζ ac

1 ) = 0,
(5.4)

with initial condition ζ ac
1 |t=0 = ζ in

1 and wac|t=0 = �win, so that∣∣Vfast
∣∣
t=0 + Vslow

∣∣
t=0 − Vin

∣∣
L2 � 
2C

(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs , (5.5)

where Vin is defined from Uin after the change of variables (1.7).

2Let us remark incidentally that such a choice of pressure with bounded energy is allowed thanks to the Boussinesq ap-
proximation applied to the rigid-lid system. Without the Boussinesq approximation, generic initial conditions will generate
horizontal pressure imbalances, which in turn yield an apparently paradoxical evolution in time of the total horizontal momen-
tum; see [10]. One can check that the total horizontal momentum is preserved for the free-surface system as well as for the
rigid-lid system with Boussinesq approximation.
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The above is an acoustic wave equation and is well understood. The following results may be found in
[4] for instance. There exists a unique solution (
−1ζ ac

1 , wac) ∈ C0(R;Hs(Rd))1+d . It satisfies �wac =
wac for any t ∈ R, and

∀t ∈ R,

(∣∣
−1ζ ac
1

∣∣2
Hs + 1

δ

∣∣wac
∣∣2
Hs

)1/2

=
(∣∣ζ in

1

∣∣2
Hs + 1

δ

∣∣win
∣∣2
Hs

)1/2

� C
(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs .

(5.6)

What is more, since d = 2, one has the Strichartz estimates∥∥
−1ζ ac
1

∥∥
L

p
t (R;Lq(Rd ))

+ ∥∥wac
∥∥

L
p
t (R;Lq(Rd ))

� C
1/p
(∣∣ζ in

1

∣∣
Hσ + C

∣∣win
∣∣
Hσ

)
,

where p, q are admissible, namely 2 < p, q < ∞ and 1
p

+ d
q

= d
2 − σ and 2

p
+ d−1

q
= d−1

2 . Set for

instance p = q = 6 and σ = 1
2 . By a scaling argument and differentiating once the system, one has∥∥Vfast

∥∥
L6(0,T ;W 1,6(Rd ))

� 
1/6C
(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs . (5.7)

It follows that we control quadratic nonlinearities as∥∥Vfast ⊗ Vfast
∥∥

L1(0,T ;H 1(Rd ))
�
∥∥Vfast
∥∥

L6(0,T ;W 1,6(Rd ))
× ∥∥Vfast

∥∥
L6/5(0,T ;W 1,3(Rd ))

� 
1/6C
(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)
,

where we used Hölder inequality, then Sobolev embedding and (5.6)–(5.7), with the restriction on the
time interval,

T −1 � C
(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs .

We deduce that Vfast satisfies the equations (1.9) up to a remainder R such that∣∣Rfast
∣∣
L1(0,T ;L2(Rd ))

→ 0 (
 → 0). (5.8)

Control of the coupling terms. Let us denote Vapp def= Vslow + Vfast. Let us first check that Vapp is an
approximate solution to (1.9), in the sense of consistency. From the above, we have that

∂tV
app + 1



Bx
[
Vapp
]
∂xVapp + 1



By
[
Vapp
]
∂yVapp = Rslow + Rfast + Rcoupl,

where Rslow and Rfast have been defined and estimated previously; and

Rcoupl def= 1




(
Bx
[
Vapp
]− Bx
[
Vfast
])

∂xVfast + 1




(
By
[
Vapp
]− By
[
Vfast
])

∂yVfast

+ 1




(
Bx
[
Vapp
]− Bx
[
Vslow
])

∂xVslow + 1




(
By
[
Vapp
]− By
[
Vslow
])

∂yVslow.
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By estimate (3.14c) in Corollary 3.4, one has∣∣Rcoupl
∣∣
L2 � C

(
m, h−1

0 ,
∣∣Vfast
∣∣
L∞,
∣∣Vslow
∣∣
L∞
)∣∣Vfast ⊗ Vslow

∣∣
H 1 .

We deduce from (5.2), (5.6) and (5.7), proceeding as for (5.8),∣∣Rcoupl
∣∣
L1(0,T ;L2(Rd ))

→ 0 (
 → 0). (5.9)

Let us now denote U ∈ C0([0, T );Hs(Rd))N(1+d) the strong solution to (1.4) with initial data U|t=0 =
Uin as defined by Theorem 1.1; and V the corresponding solution to (1.9) defined by the change of
variables (1.7). By Theorem 1.1 and Lemma 4.1, one has

|V|L∞(0,T ;Hs(Rd )) � C
(
m, h−1

0 ,
∣∣Uin
∣∣
Hs

)∣∣Uin
∣∣
Hs . (5.10)

Proceeding as above, we find that the difference between the exact and the approximate solution, W
def=

Vapp − V, satisfies

∂tW + 1



Bx[V] ∂xW + 1



By[V] ∂yW = Rslow + Rfast + Rcoupl + R,

with

R
def= 1




(
Bx
[
Vapp
]− Bx[V]) ∂xVapp + 1




(
By
[
Vapp
]− By[V]) ∂yVapp.

Again, by estimate (3.14c) in Corollary 3.4, one has

|R|L2 � C
(
m, h−1

0 ,
∣∣Vapp
∣∣
W 1,∞, |V|L∞

)∣∣Vapp − V
∣∣
L2 . (5.11)

We now apply Proposition 3.5 with W = Vapp − V, and deduce

∣∣Vapp − V
∣∣
L2(t) �

∣∣Vapp − V
∣∣
L2(0)eC1|||V|||t +

∫ t

0
eC1|||V|||(t−t ′)C0

(
t ′
)∣∣Rslow + Rfast + Rcoupl + R

∣∣
L2

(
t ′
)

dt ′,

with C0(t) = C(m, h−1
0 , |V|W 1,∞(t)), C1 = C(m, h−1

0 , ‖V‖L∞(0,T ×Rd )).
Using the above control on the initial data (5.5) and remainder terms (5.3), (5.8), (5.9), (5.11) and

Gronwall’s lemma, we obtain

sup
t∈[0,T )

∣∣Vapp − V
∣∣
L2(t) → 0 (
 → 0).

By the logarithmic convexity of Sobolev norms and estimates (5.2), (5.6), (5.10), it follows

sup
t∈[0,T )

∣∣Vapp − V
∣∣
Hs′ (t) → 0 (
 → 0)

for any s ′ < s.
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This concludes the proof of Theorem 1.2, with the exception of the uniqueness of the strong solution
of the rigid-lid system (1.3). However, given two solutions

URL
j

def= (pRL
j , ζ RL

2,j , . . . , ζ RL
N,j , uRL

1,j , . . . , uRL
N,j

)� ∈ L∞(0, T ;Hs
(
Rd
))N(1+d)

(j = 1, 2)

with same initial data, we may construct as above (i.e. multiplying the pressure with a 
 prefactor)
Uslow

1,
 , Uslow
2,
 ∈ L∞(0, T ;Hs(Rd))N(1+d) ∩ W

1,∞
t,x ((0, T ) × Rd), two families of approximate solutions of

the free-surface system (3.4), for arbitrarily small 
. Applying Proposition 3.5 with the equation satisfied
by the difference between the two solutions (after the change of variable (1.7)), using (5.2), (5.3) and
taking the limit 
 → 0, yields URL

1 = URL
2 .
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Appendix A. Notations, functional setting and technical tools

A.1. Notations

We denote by C(λ1, λ2, . . .) a non-negative constant depending on the parameters λ1, λ2, . . . and
whose dependence on λj is always assumed to be non-decreasing. It may also depend without acknowl-
edgment on the horizontal dimension, d; number of layers, N ; Sobolev index at stake, s.

Given X a topological vector space, X′ denotes its continuous dual, endowed with the strong topology.
Given H a Hilbert space and T : H → H a continuous linear operator, we denote T � its adjoint.
For 1 � p < ∞, we denote Lp = Lp(Rd) the standard Lebesgue spaces associated with the norm

|f |Lp
def=
(∫

Rd

∣∣f (x)
∣∣p dx
) 1

p

< ∞.

The space L∞ = L∞(Rd) consists of all essentially bounded, Lebesgue-measurable functions f

endowed with the norm

|f |L∞
def= ess sup

x∈Rd

∣∣f (x)
∣∣ < ∞.

For k ∈ N, we denote by Wk,∞ = Wk,∞(Rd) = {f s.t. ∀0 � |α| � k, ∂αf ∈ L∞(Rd)} (endowed
with its canonical norm) where we use the standard multi-index notation for α-differentiation.

We denote by Ck = Ck(Rd) the space of continuous functions on Rd with continuous derivatives up
to the order k, endowed with the same norm.

The real inner product of any functions f1 and f2 in the Hilbert space L2(Rd) is denoted by

(f1, f2)L2
def=
∫
Rd

f1(x)f2(x) dx.
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For any real constant s ∈ R, Hs = Hs(Rd) denotes the Sobolev space of all tempered distributions,
f ∈ S ′(Rd), such that |f |Hs = |
sf |L2 < ∞, where 
 is the Fourier multiplier



def= (Id − 	)1/2 = (Id + |D|2)1/2

.

For any function u = u(t, x) defined on [0, T ) × Rd with T > 0, and any of the previously defined
functional spaces, X, we denote L∞(0, T ;X) the space of functions such that u(t, ·) is controlled in X,
uniformly for t ∈ [0, T ), and use double bar symbol for the associated norm:

‖u‖L∞(0,T ;X) = ess sup
t∈[0,T )

∣∣u(t, ·)∣∣
X

< ∞.

For k ∈ N, Ck([0, T );X) denotes the space of X-valued continuous functions on [0, T ) with contin-
uous derivatives up to the order k. Finally, we denote, in order to avoid confusions,

W 1,∞
t,x = W 1,∞

t,x

(
(0, T ) × Rd

) = {f, such that f, ∇f, ∂tf ∈ L∞((0, T ) × Rd
)}

.

We denote by (·, ·) and | · | the Euclidean inner product and norm on vector space RN or CN and ‖ · ‖
the corresponding induced norm on MN(R), the space of N-by-N matrices with real entries (the choice
of the norms has little significance).

If the entries belong to a Banach algebra X (e.g. X = Wk,∞(Rd) or X = Hs(Rd) with s > d/2), then
we denote (·, ·)X, | · |X and ‖ · ‖X the corresponding inner product, vector and matrix norms.

A.2. Product and commutator estimates

We quickly recall the standard product, Schauder and Kato–Ponce estimates in Hσ(Rd), σ > d/2.
Proofs or references concerning the following results may be found for instance in [25].

Consider scalar functions f, g ∈ Hσ(Rd). By Sobolev embedding, one has f, g ∈ C0(Rd) and

|f |L∞ � C|f |Hσ .

It follows that the product is well-defined and continuous. Moreover, one has fg ∈ Hσ(Rd) and

|fg|Hσ � C|f |Hσ |g|Hσ .

Moreover, if F ∈ Ck(R) with k ∈ N, k � σ and satisfies F(0) = 0, then F(f ) ∈ Hσ(Rd) and∣∣F(f )
∣∣
Hσ � C

(|f |Hσ , |F |Ck

)|f |Hσ .

A consequence of the above is of particular importance in our setting. Let g ∈ Hσ(Rd) be such that
1 + g � h0 > 0. Then for any f ∈ Hσ(Rd), f

1+g
∈ Hσ(Rd) and∣∣∣∣ f

1 + g

∣∣∣∣
Hσ

� C
(
h−1

0 , |g|Hσ

)|f |Hσ
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(it suffices to remark f

1+g
= f − f

g

1+g
, and apply the Schauder estimate with F a smooth function such

that F(X) = X
1+X

if |X| � 1 − h0 and F(X) = 0 if |X| � 1 − h0/2). Finally, we have the celebrated
Kato–Ponce estimate for commutators:∣∣[
σ, f

]
∂xg
∣∣
L2 � C|f |Hσ |∂xg|Hσ−1 � C|f |Hσ |g|Hσ .

A.3. Paradifferential calculus

In this section, we recall some results concerning Bony’s paradifferential calculus. We follow the
definition and most of the notations of [29], although the latter is restricted to scalar functions and
operators. The generalizations to (finite dimensional) vector spaces brings no additional difficulty since
each operation may be reduced to a linear combination of entrywise scalar operations.

Definition A.1 (Symbols). Let k ∈ N and m ∈ N. We denote �m
k the space of locally bounded functions

A(x, ξ) : Rd × Rd → MN(1+d)(C) which are C∞ with respect to ξ and such that for any α ∈ Nd ,
x �→ ∂α

ξ A(x, ξ) belongs to Wk,∞(Rd) and there exists a constant Cα such that

∀ξ ∈ Rd,
∥∥∂α

ξ A(·, ξ)
∥∥

Wk,∞ � Cα

(
1 + |ξ |)m−|α|

,

where we use the standard multi-index notation for α-differentiation. For A ∈ �m
k , we denote

Mm
k (A; n)

def= sup
|α|�n

sup
ξ∈Rd

∥∥(1 + |ξ |)|α|−m
∂α
ξ A(x, ξ)

∥∥
Wk,∞ .

Given a symbol A ∈ �m
k , one can associate a suitable paradifferential operator.

Definition A.2 (Paradifferential operators). Let A ∈ �m
k . Then we define the paradifferential operator

TA, with symbol A, by

∀U ∈ L2
(
Rd
)N(1+d)

, TAU(x)
def= (2π)−d

∫
Rd

eix·ξ�ψ

A (x, ξ)Û(ξ) dξ, (A.1)

where �
ψ

A is defined with Fx�
ψ

A(η, ξ) = ψ(η, ξ)FxA(η, ξ) where FxA(η, ξ) is the (component-by-
component) Fourier transform of A(x, ξ) with respect to x, and ψ is an admissible cut-off in the sense
of [29, Definition 5.1.4], and whose expression does not need to be precised.

We now give some results used in this work.

Proposition A.3 ([29], (5.25) and Theorems 6.1.4, 6.2.4). Let m ∈ N and assume d � 2.

(i) If A ∈ �m
0 , then for any s ∈ R, TA : Hs → Hs−m is bounded, and

‖TA‖Hs→Hs−m � C(s)Mm
0 (A; 2).

(ii) If A ∈ �m
1 and B ∈ �m′

1 , then TATB − TAB : Hs → Hs−(m+m′−1) is bounded, and

‖TATB − TAB‖Hs→Hs−(m+m′−1) � C(s)Mm
1 (A; 3)Mm

1 (B; 3).
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(iii) If A ∈ �m
1 , then (TA)� − TA : Hs → Hs−(m−1) is bounded, and∥∥(TA)� − TA

∥∥
Hs→Hs−(m−1) � C(s)Mm

1 (A; 3).

We will also make use of the particular cases of Fourier multipliers and paraproducts:

Proposition A.4 ([29], Theorems 5.1.15, 5.2.8). Let A ∈ �m
k with m, k ∈ N

(i) If A depends only on ξ : A = A(ξ) ∈ C∞(Rd), then TA = A(D) where A(D) is the Fourier
multiplier associated with A, i.e.

∀U ∈ L2
(
Rd
)N(1+d)

, ∀ξ ∈ Rd, T̂AU(ξ) = Â(D)U(ξ) = A(ξ)Û(ξ).

(ii) If A depends only on x: A = A(x) ∈ Wk,∞(Rd) with k ∈ N, then

‖TAU − AU‖Hk � C(k)‖A‖Wk,∞|U |L2,

∀|α| � k,
∥∥TA ∂αU − A∂αU

∥∥
L2 � C(k)‖A‖Wk,∞|U |L2 .

Appendix B. Eigenstructure of our system

In this section, we give some information on the eigenstructure of the operators at stake in the mul-
tilayer shallow water model (1.9), namely Bx[V] defined in (3.4); the translation in terms of the ini-
tial formulation (1.1), or Ax[U], is immediate through the similarity transform (3.5). More precisely,
we show that the above matrices are semisimple provided that each layer’s depth is positive and the
shear velocities are sufficiently small. This provides the complete eigenstructure of the full symbol
ξxBx[V] + ξyBy[V] thanks to the rotational invariance property (see Lemma 3.2). We use this result
in order to construct a symmetrizer of the system with the desired properties described in Section 3.1
(Lemma 3.3), but we believe that such information is of independent interest.

Indeed, despite numerous works on the subject, the available information on the domain of hyper-
bolicity and eigenstructure of the multilayer shallow-water model is very sparse outside of the one or
two-layer situation. The one-layer case is very classical and there is no need to discuss the subject here.
Pioneer work on the two-layer case, in the limit 
 
 1 and dimension d = 1 setting, include [38] for
the free-surface case and [27] for the rigid-lid situation. We let the reader refer to [6] and references
therein for the case of 
 � 
0 > 0. Additional, numerical information may be found in [12]. Sufficient
criteria for the hyperbolicity of the bi-fluidic shallow water model in the general situation of dimension
d = 2 and free-surface situation are provided in [14,31], while the rigid-lid setting is treated in [8,21].
Starting from N = 3 layers, explicit results become out of reach except for very specific situations; see
[13,18,41].

In the general case of N layers, the author provides in [16] a non-explicit sufficient condition for
strict hyperbolicity in the case of dimension d = 1, and for 
 � 
0 > 0, using that the eigenproblem,
in absence of shear velocities, reduces to a finite-difference analogue of the Sturm–Liouville problem
(a similar tridiagonal reduction already appeared much earlier in the literature; see [5] and references
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therein). In [32], Monjarret provides a sufficient criterion for hyperbolicity, for d = 1 or d = 2, by
exhibiting the symmetrizer recalled in Section 2. Very precise information concerning the eigenstructure
are also provided in an asymptotic limit which does not fit in our situation when N � 3, since it
requires a sharp scale separation for densities between each layer; see [32, (4.1)]. In this section, we
build upon these works, by showing that the strategy of [16] extends to dimension d = 2 and arbitrarily
small density contrast 
; under hypotheses on the flow which are fully consistent (although, again, non-
explicit) with the criteria given in [32].

Roughly speaking, we show that provided that shear velocities are not too large, the nonlinear evolu-
tion of the flow maintains N modes of propagation. One of them is the barotropic mode, and is respon-
sible for the singular time oscillations of the system in the limit 
 → 0. In our scaling, the wave speed
of the N − 1 baroclinic modes are uniformly bounded from above and from below, and remain isolated
if the shear velocities are sufficiently small.

Let us fix h0 > 0 and denote

Vh0 = {(
−1ζ1, ζ2, . . . , ζN, �, . . . , �
)� ∈ RN(1+d) such that (3.1) holds with h0

}
,

Zh0 = {(
−1ζ1, ζ2, . . . , ζN, 0, . . . , 0
)� ∈ RN(1+d) such that (3.1) holds with h0

}
.

We first remark that in the case of dimension d = 2, there are N trivial eigenvalues of 1



Bx[V].

Lemma B.1. Let V ∈ Vh0 . There are N linearly independent eigenvectors of 1



Bx[V], with correspond-

ing eigenvalue μ0
n

def= ux
n(V), as given by (1.8), associated with rank-one eigenprojections

P0
n[V] def= (JF [V])−1

�2N+nJF [V], (B.1)

where �n is the orthogonal projection onto the nth variable.

Proof. The result is straightforward when using the block formulation of Ax[U], (2.2), and the similarity
transformation (3.5), i.e. Bx[V] = (JF [V])−1Ax[F(V)]JF [V]. �

In the following lemmata, we give sufficient conditions on V ∈ Vh0 allowing to complete the basis of
eigenvectors with distinct and real associated eigenvalues.

Lemma B.2. Let Z ∈ Zh0 . Then for any 
 > 0, 1



Bx[Z] has 2N distinct, real, non-zero eigenvalues,
μ±n(Z) = ±μn(Z), n ∈ {1, . . . , N}, with

−μ1(Z) < · · · < −μN(Z) < 0 < μN(Z) < · · · < μ1(Z).

Moreover, one can set 
−1
0 , C0 = C(m, h−1

0 , |Z|) such that if 
 ∈ (0, 
0), then

C−1
0 � 


∣∣μ1(Z)
∣∣ � C0 and C−1

0 �
∣∣μn(Z)
∣∣ � C0, (B.2a)∣∣μn(Z) − μn−1(Z)

∣∣ � C−1
0 (n � 2). (B.2b)
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The associated eigenprojections satisfy (recall the definition of �x
f in (3.6))∥∥P±1[Z]∥∥+ ∥∥P±n[Z]∥∥ � C

(
m, h−1

0 , |Z|) (n � 2), (B.2c)∥∥P±1[Z](Id − �x
f

)∥∥+ ∥∥(Id − �x
f

)
P±1[Z]∥∥ � 
C

(
m, h−1

0 , |Z|), (B.2d)∥∥P±n[Z]�x
f

∥∥+ ∥∥�x
f P±n[Z]∥∥ � 
C

(
m, h−1

0 , |Z|) (n � 2). (B.2e)

All these objects are smooth with respect to 
 ∈ (0, 
0) and Z ∈ Zh0 .

Proof. The eigenvalue problem concerning 1



Bx[Z] is related by (3.5) to the one for 1



Ax[Z], which given
the simple block-structure exhibited in (2.2) may be reduced, for Z ∈ Zh0 , to the eigenvalue problem for
the following tridiagonal matrix

(HR)−1 = D(e
)D(r̃)−1	�D
(
h−1
)
D(γ )	D(e
)

(recall notations and identities in the proof of Proposition 2.1). Equivalently, we consider the eigenvalue
problem for

T
 def= D(r̃)1/2(HR)−1D(r̃)−1/2 = D(e
)D(r̃)−1/2	�D
(
h−1
)
D(γ )	D(r̃)−1/2D(e
).

Since T
 is a real, symmetric tridiagonal matrix with non-zero (positive) off-diagonals entries [43], there
exists λ1 < · · · < λN and (x1, . . . , xN) an orthonormal basis of RN such that

∀n ∈ {1, . . . , N}, T
xn = λnxn.

Since γn, rn, h
−1
n , 
 > 0, one may check that detn(T
) > 0 where detn(T
) is the determinant of the

n-by-n upper-left submatrix (i.e. leading principal minor) of T
, from which we deduce λ1 > 0.
Now, let us consider

T0 = D(e0)D(r̃)−1/2	�D
(
h−1
)
D(γ )	D(r̃)−1/2D(e0),

i.e. the matrix obtained from T
 by setting to zero the first row’s and column’s entries. Using the above
analysis on the leading principal minor of order 1, one obtains immediately that there exists 0 = λ0

1 <

λ0
2 < · · · < λ0

N and x0
n, such that T0x0

n = λnx0
n (n = 1, . . . , N). The above eigenvalues and eigenvectors

depend continuously on the parameters which are, by assumption, bounded in a compact set; in particular
there exists C0 = C(m, h−1

0 , |Z|), for a given N , such that

C−1
0 < λ0

2 < · · · < λ0
N < C0 and

∣∣λ0
n − λ0

n−1

∣∣ > C−1
0 (n = 2, . . . , N).

Again by continuity, one can set 
−1
0 = C(m, h−1

0 , |Z|) such that if 
 ∈ (0, 
0), then λn satisfy the above
(replacing C0 with 2C0). Furthermore, we have (augmenting C0 if necessary)


2C−1
0 � λ1 = det

(
T

)× (�N

n=2λn

)−1 � 
2C0.
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Going back to the original problem, one deduces from (3.5) and (2.2) that for any n ∈ N, μ±n
def=

±λ
−1/2
n is an eigenvalue of 1



Bx[Z]. This concludes the proof of the first part of the statement with

(B.2a), (B.2b).
Notice now that the above analysis is not restricted to 
 > 0. Indeed, the formula for T
 above defines

a (complex) tridiagonal matrix for any 
 ∈ C and is single-valued, as least for 
 sufficiently small. Since
the off-diagonal entries do not vanish, T
, and therefore 1



Bx[Z] has 2N distinct and non-zero eigenvalues

for any 
 �= 0. Moreover, we are in the situation of [22, Theorem II.1.10], namely T
 is normal for a
sequence 
i → 0 (simply restricting to 
i ∈ R), and therefore λn(
) and the associated eigenprojection
are holomorphic around 
 = 0.

The extra information concerning the corresponding eigenprojections in the limit of vanishing 
 are
obtained thanks to standard perturbation theory [22, Chapter II.1]. Indeed, from (1.9) (see also the proof
of Lemma 3.2), one can write for any 
 ∈ C,

Bx[Z] = L + 
δB[Z]

with

L =
⎛⎜⎝ 0N N 0N

αN� 0N 0N

0N 0N 0N

⎞⎟⎠ , N =

⎛⎜⎜⎝
0 . . . 0 1

0

0N−1
...

0

⎞⎟⎟⎠ , α = γ1

N∑
j=1

δj ;

and δB[Z] is smooth with respect to Z and holomorphic with respect to 
, and satisfies∥∥δB[Z]∥∥ � C
(
m, h−1

0 , |Z|).
It is obvious that L has only two non-zero eigenvalues:

LxL
± = ±√

αxL
±,

with (Id − �x
f )x

L± = 0.
Using that 
μ±1 (resp. ±√

α) is a simple eigenvalue of Bx[Z] (resp. L), we introduce the Dunford–
Taylor integral for the eigenprojection

P±1[Z] = −1

2πi

∫
�±1

∞∑
k=0

(L − ηId)−1
(−
δB[Z](L − ηId)−1

)k
dη,

where �±1 is a positively oriented closed curve enclosing 
μ±1 as well as ±√
α , but excluding the other

eigenvalues of Bx[Z] and L, namely 0 and 
μ±n (n � 2). One can restrict |
| < 
0, 
−1
0 = C(m, h−1

0 , |Z|)
such that |
|‖δB[Z]‖ maxη∈�± ‖(L − ηId)−1‖ � 1/2, and therefore the series in the Dunford–Taylor
integral is uniformly convergent. In particular,

P±1[Z] = −1

2πi

∫
�±1

(L − ηId)−1 dη + 


2πi

∫
�±1

(L − ηId)−1
∞∑

k=1


k−1
(−δB[Z](L − ηId)−1

)k
dη.
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The first term on the right hand side is exactly the eigenprojection onto xL±, and the series in the second
term is immediately estimated. We deduce∥∥P±1[Z]∥∥ � C

(
h−1

0 , 
, |Z|), ∥∥(Id − �x
f

)
P±1[Z]∥∥+ ∥∥P±1[Z](Id − �x

f

)∥∥ � 
C
(
h−1

0 , 
, |Z|),
thus the first part of (B.2c) and (B.2d) is proved.

One cannot directly use the same technique for the other eigenvalues, as they correspond to an ex-
ceptional point of Bx[Z] = L + 
δB[Z], namely 0 is an eigenvalue of L with algebraic multiplicity
N(1 + d) − 2, and splits for 
 �= 0 in 2N − 2 distinct eigenvalues, 
μ±n(Z), n � 2 (completed
with the (d − 1)N linearly independent eigenvectors given in Lemma B.1 which remain in the ker-
nel). As a consequence, the Dunford–Taylor integral around this group of eigenvalues only yields a
control of the total projection, namely the sum of the corresponding eigenprojections; or, if one inte-
grates around a single eigenvalue, one cannot in general ensure that the series is convergent, even for 


small.
However, we have seen that λn(
) is holomorphic in 
 and converges towards λn(0) > 0 as


 → 0, so that 
μ±n(Z) = ±
λn(
)−1/2 is holomorphic near 
 = 0. This means [22, Theo-
rem II.1.8] that the exceptional point is not a branch point, and therefore P±n[Z] is single-valued,
but still may have a pole at 
 = 0. Using now that 0 is a semisimple eigenvalue of the unper-
turbed operator, L, and that we have shown that 
μ±n(Z), the eigenvalues of Bx[Z] splitting from
0 are simple (as they are one-dimensional), we may use the so-called reduction process, and de-
duce [22, Theorem II.2.3] that the associated spectral projections, P±n[Z], are actually holomorphic
at 
 = 0.

This shows (B.2c), and by continuity that P±n[Z]|
=0 is a projection onto the kernel of L. Thus
(P±n[Z]|
=0)�

x
f = �x

f (P±n[Z]|
=0) = 0N(1+d), and (B.2e) follows. Lemma B.2 is proved. �

We now deduce from Lemma B.2, thanks to standard perturbation theory, the corresponding informa-
tion on the eigenvalue problem for any V ∈ Vh0 .

Lemma B.3. Let V ∈ Vh0 . Then one can set 
−1
0 , ν = C(m, h−1

0 , |V|) such that if 
 ∈ (0, 
0) and V
satisfies additionally

∀n ∈ {2, . . . , N}, ∣∣vx
n

∣∣+ ∣∣vy
n

∣∣ � ν−1,

then the matrix 1



Bx[V] is diagonalizable. In addition to the N “trivial” eigenvectors described in

Lemma B.1, 1



Bx[V] has 2N eigenvectors corresponding to distinct and real eigenvalues, μ±n(V), such
that

μ−1(V) < · · · < μ−N(V) < μN(V) < · · · < μ1(V).

Moreover, there exists C0 = C(m, h−1
0 , |V|) such that

C−1
0 � 


∣∣μ±1(V)
∣∣ � C0 and

∣∣μ±n(V)
∣∣ � C0 (n � 2), (B.3a)∣∣μ−N(V) − μN(V)

∣∣ � C−1
0 and

∣∣μ±n(V) − μ±(n−1)(V)
∣∣ � C−1

0 (n � 2). (B.3b)
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The associated spectral projections are smooth with respect to V ∈ Vh0 ; and, for any V1, V2 ∈ Vh0 ,∥∥P±1[V1] − P±1[V2]
∥∥ � C1
|V1 − V2|, (B.3c)∥∥(P±n[V1] − P±n[V2]
)
�x

f

∥∥ � C1
|V1 − V2| (n � 2), (B.3d)∥∥P±n[V1] − P±n[V2]
∥∥ � C1

(∣∣(Id − �f)(V1 − V2)
∣∣+ 
|V1 − V2|

)
(n � 2), (B.3e)

where C1 = C(m, h−1
0 , |V1|, |V2|).

Proof. We shall use perturbation arguments, starting from the knowledge that, thanks to Lemma B.2,
the non-zero eigenvalues of Bx[Z], for any Z ∈ Zh0 , are simple. In what follows, we denote Z ∈ Zh0 the
vector obtained from setting to zero all nth entries of V with n � N + 1. Identifying (1.9) with (3.4), we
may write (improving the description provided in Lemma 3.2)

Bx[V] = Bx[Z] + 
Kx Id + 
δBf[V] + 
δBs[V], (B.4)

where one can choose Kx = Kx(V) (for example Kx = (
∑N

i=1 δi)
−1wx) such that δBs contains (at

first order in 
) only contributions from shear velocities v2, . . . , vN , while δBf contains a leading-order
contribution in wx , wy , but only on “fast variable” entries. More precisely, one has∥∥δBs[V]∥∥+ ∥∥δBf[V]∥∥ � C

(
m, h−1

0 , |V|)|V|, (B.5)∥∥δBs[V]∥∥ � C
(
m, h−1

0 , |V|)(ν−1 + 
|V|), (B.6)∥∥δBf[V](Id − �x
f

)∥∥ � 
C
(
m, h−1

0 , |V|)|V|. (B.7)

Since all the non-trivial eigenvalues of Bx[Z] (and therefore the ones of B[Z] + 
Kx Id) are simple, we
may use the Dunford–Taylor integral

P±n[V] = −1

2πi

∫
�±n

∞∑
k=0

R(η)
(−
(δBs + δBf)R(η)

)k
dη, (B.8)

where �±n is a positively oriented closed curve enclosing the eigenvalue 
μ±n(Z)+
Kx , but excluding
the other eigenvalues of B[Z] + 
Kx Id, and

R(η)
def= (Bx[Z]+
Kx Id−ηId

)−1 =
N∑

n′=1

Pn′ [Z]

μn′(Z) + 
Kx − η

+ P−n′ [Z]

μ−n′(Z) + 
Kx − η

+ P0
n′ [Z]


Kx − η
,

(B.9)

with μ±n(Z), P±n[Z], P0
n[Z] have been defined in Lemmata B.1 and B.2.

Let us first consider the case n = 1. From Lemma B.2, there exists C0 = C(m, h−1
0 , |Z|) such that if

n = 1, one can choose �±1 as the circle of center 
μ±1(Z) and of radius C−1
0 . Using (B.5) and (B.9),
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one can restrict 
 ∈ (0, 
0) with 
−1
0 = C(m, h−1

0 , |V|) such that the series in (B.8) is immediately
convergent and

∥∥P±1[V] − P±1[Z]∥∥ � 1

π

∞∑
n=1


n
(

sup
�±n

∥∥R(η)
∥∥)1+n(‖δBs‖ + ‖δBf‖

)n � 
C
(
m, h−1

0 , |V|)|V|,

since P±1[Z] = −1
2πi

∫
�±n

R(η) dη is the first term of the series. Since P±1[Z], P±1[V] are rank-one, one
has


μ±1(V) = tr
(
Bx[V]P±1[V]) = 
μ±1(Z)+tr

(
Bx[V](P±1[V]−P±1[Z]))+tr

((
Bx[V]−Bx[Z])P±1[Z]),

and the upper and lower bound on 
|μ±1(V)| in (B.3a) follows from the ones on 
|μ±1(Z)| given in
(B.2a), and the above estimate with (3.10) in Lemma 3.2.

We now turn to the case 2 � n � N . In this case, we set �±n as the circle of center 
μ±1(Z) and of
radius 
C−1

0 (with C0 as in (B.2b)), thus we may only ensure

sup
�±n

∥∥R(η)
∥∥ � 
−1C

(
m, h−1

0 , |Z|).
As a consequence, we need the precised estimates (B.6)–(B.7) as well as the decomposition into partial
fraction (B.9) to ensure that the series converge. Indeed, thanks to (B.6), one may augment ν and lower

0 in order to ensure


 sup
η∈�±n

∥∥R(η)
∥∥∥∥δBs[V]∥∥ � C

(
m, h−1

0 , |V|)(
|V| + ν−1
)

� 1

2
.

Now, we use that for any n′ � 2,

δBf[V]P±n′ [Z] = (δBf[V](Id − �x
f

))
P±n′ [Z] + δBf[V](�x

f P±n′ [Z]).
Thus by (B.2e) and (B.7), one has∥∥δBf[V]P±n′ [Z]∥∥ � C

(
m, h−1

0 , |V|)
|V| (n′ � 2
)
.

The contribution from P0
n′ [Z] is straightforwardly estimated, and the contribution from P±n′ with n′ = 1

contains no difficulty, since, (
μn(Z) + 
Kx − η)−1 is uniformly bounded. Altogether, one has

sup
η∈�±n

∥∥
δBf[V]R(η)
∥∥ � C
(
m, h−1

0 , |V|)
|V|.

Restricting 
 ∈ (0, 
0) if necessary, the series in (B.8) converges and∥∥P±n[V] − P±n[Z]∥∥ � C
(
m, h−1

0 , |V|)(
|V| + ν−1
)
.

In the same way, and using (B.2e), one easily sees that∥∥
R(η)�x
f

∥∥ � C
(
m, h−1

0 , |V|)
|V|,
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and therefore∥∥(P±n[V] − P±n[Z])�x
f

∥∥ � 
C
(
m, h−1

0 , |V|)|V|.

In particular, provided 
 ∈ (0, 
0) and ν−1 are sufficiently small, �±n contains exactly one eigenvalue
of 1



Bx[V], and (B.3a)–(B.3b) follow.

Estimates (B.3c), (B.3d), (B.3e) are obtained identically as above, using the decomposition

Bx[V2] = Bx[V1] + 

(
Kx

2 − Kx
1

)
Id + δB[V1, V2],

where

δB[V1, V2] def= Bx[Z2] − Bx[Z1] + 

(
δBf[V2] − δBf[V1]

)+ 

(
δBs[V2] − δBs[V1]

)
,

and remarking that

∣∣Kx
2 − Kx

1

∣∣+ 1




∥∥Bx[Z2] − Bx[Z1]
∥∥+ ∥∥δBs[V2] − δBs[V1]

∥∥
� C1
(∣∣(Id − �f)(V1 − V2)

∣∣+ 
|V1 − V2|
)
,∥∥δBf[V2] − δBf[V1]

∥∥+ 1




∥∥(δBf[V2] − δBf[V1]
)(

Id − �x
f

)∥∥ � C1|V1 − V2|,

with C1 = C(m, h−1
0 , |V1|, |V2|). This concludes the proof of Lemma B.3. �

Remark B.4. The proof of Lemma B.3 is somewhat cumbersome and rely on delicate properties of
Bx[V], namely (B.4) with (B.6) and (B.7), because we wanted to be as precise as possible as for the
hyperbolicity conditions (see Remark 2.2). The proof is considerably shortened and appears more robust
if one replaces the assumption of Lemma B.3 with the more stringent |V| � ν−1, as one may then simply
use Bx[V] = Bx[Z] + 
δB[V] with |δB[V]| � C(m, h−1

0 , |V|)|V| in lieu of (B.4).
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